Химическая энергия известна каждому современному человеку и широко используется во всех сферах деятельности.

Она известна Человечеству с самых давних времен и всегда применялась как в быту, так и на производстве. Наиболее распространенными устройствами, использующими химическую энергию являются: камин, печь, горн, домна, факел, газовая горелка, пуля, снаряд, ракета, самолет, автомобиль. Химическая энергия применяется в производстве медикаментов, пластика, синтетических материалов, и т.п.

Источники

Наиболее применяемыми источниками химической энергии являются: нефтяные месторождения (нефть и ее производные), газоконденсатные месторождения (природный газ), угольные бассейны (каменный уголь), болота (торф), леса (древесина), а также поля (зеленые растения), луга (солома), моря (водоросли), и т.п.

Химические источники энергии являются «традиционными», однако их использование оказывает влияние на климат планеты. При нормальном функционировании экосистемы, солнечная преобразуется в форму химической, и хранится в ней на протяжении продолжительного времени. Использование этих природных запасов, да и вообще нарушение энергетического баланса планеты приводит к непредсказуемым последствиям.

Человек не использует химическую энергию непосредственно (разве что к такому использованию можно отнести некоторые химические реакции).

Обычно химическая энергия, выделившаяся в результате разрыва высокоэнергетических и образования низкоэнергетических химических связей, выделяется в окружающую среду в виде тепловой энергии . Химическую энергию можно назвать наиболее распространенной и широко используемой с древности и до наших дней. Любой процесс, связанный с горением, имеет в своей основе энергию химического взаимодействия органического (реже минерального) вещества и кислорода.

Современное промышленное высокотехнологичное «горение» осуществляется в двигателях внутреннего сгорания и газовых турбинах , в плазменных генераторах и топливных элементах . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – тепловую энергию. К великому сожалению ученых и инженеров, к.п.д. тепловых машин довольно мал – не более 40%. Ограничения на дальнейший рост кпд наложены не материалами, а самой природой. 40% — это предельный кпд тепловой машины и дальше его увеличить невозможно.

Топливный элемент производит непосредственное преобразование энергии химических связей в электрическую энергию. В некотором роде то же самое делает и плазменный генератор. Однако, и в том и в другом случае, часть энергии все равно теряется в виде выделяющегося тепла и рассеивается. Возможности решения проблемы рассеяния тепла пока не существует, что снижает кпд любой самой хорошей преобразующей установки.

Химические взаимодействия лежат в основе механической энергии движения тел людей и животных. Человек питается растениями и животными, получая из них энергию химических связей, которая сформировалась благодаря фотосинтезу. Таким образом, первоисточником для химической энергии является лучистая солнечная энергия, или, фактически, энергия ядерного синтеза от процессов, происходящих на Солнце. Как и всё живое на Земле, в конечном счете, человек питается энергией Солнца.

Приведем некоторые примеры цепочек преобразования химической энергии

При сгорании порох превращается в горячие газы, которые в свою очередь сообщают пуле кинетическую энергию. Пуля в этом случае набирает упорядоченную кинетическую энергию за счет теплоты горячих газов (их «неорганизованной» кинетической энергии). Откуда же берут тепловую энергию сами молекулы? До этого взрыва порох был холодным твердым телом, содержащим запас «химической энергии». Он содержал в себе энергию первичного топлива - угля, дров, нефти. А это — молекулярная энергия, запасенная, если угодно, в силовых полях атомов. Представьте, что химическое соединение состоит из атомов, которые вопреки отталкивающим пружинящим межатомным силам посажены на свои места в молекуле и «защелка закрыта». Потенциальная энергия при этом запасается в «сжатых пружинах». Разумеется, химическая энергия - гораздо более сложная вещь, чем такая модель, но общая картина ясна: атомы и молекулы запасают энергию, которая высвобождается при одних химических изменениях и запасается при других. Большая часть горючих веществ высвобождает свою энергию при горении в кислороде, так что энергия их связана с силовыми полями молекул топлива и кислорода. Трудно указать, где она расположена, но количество ее достаточно определенно, поскольку при переходе энергии в другие формы мы можем измерять работу, т. е. получить произведение сила на расстояние, например, столько-то джоулей на каждый килограмм полностью сгоревшего топлива. Химическую энергию пороха или заряда фейерверочной ракеты локализовать легче. Вся она сидит там, внутри молекул горючего.

Пища — источник химической энергии

Пища - источник химической энергии. Пища - это топливо для людей и животных, она снабжает их химической энергией, которая переносится потоком крови к нуждающимся в ней мышцам. Мышцы могут преобразовывать часть получаемой энергии в механическую, поднимая грузы и делая другую полезную работу. Пища содержит в основном атомы углерода, кислорода и водорода. Рассмотрим, к примеру, молекулу простейшего сахара, глюкозы C6H12O6, поддерживающей работу мышц.

В процессе работы мышц и их отдыха, молекулы этого топлива расщепляются пополам, затем отщепляется шесть молекул H2O, а атомы углерода, соединяясь с атомами кислорода, поступающего из легких, дают шесть молекул CO2. Это вкратце сильно упрощенная картина химии жизни. Основные компоненты пищи - крахмал, сахара, жиры и белки - представляют большие молекулы, которые построены из меньших молекулярных структур, состоящих из атомов.

Эти небольшие комплексы синтезируются растениями, связываются ими каким-то способом, образуя растительные вещества, такие, как углеводы и целлюлоза. Животные, поедая растительную или животную пищу, расщепляют эти вещества и перераспределяют их составляющие так, чтобы образовывались нужные большие молекулы. Однако сами животные не синтезируют их частей. Энергию, необходимую для движения и другой деятельности, они получают при дальнейшем расщеплении некоторых молекулярных комплексов на углекислый газ и воду. Эта энергия первоначально была «усвоена» растениями из солнечного света и запасена при синтезе таких комплексов в виде энергии химических связей. Связывание и расщепление этих малых комплексов в пищеварительной системе животного - обычно дело нехитрое и не требует больших затрат энергии, оно быстро совершается микробами или ферментами. Большие молекулы в нашей пище содержатся в углеводах к целлюлозе, которые составлены из множества групп простых молекул сахара наподобие глюкозы, жиров с длинными цепями CH2 и белков - еще больших по величине и очень сложных молекул, необходимых для строительства и обновления тканей. Процесс, посредством которого химическая энергия превращается в теплоту тела или работу мышц, - в сущности, то же горение. При сгорании топлива в пламени происходит соединение его с кислородом с образованием воды и углекислого газа. Простейшее топливо нашего тела, такое, как глюкоза, соединяясь с кислородом, поступающим из легких, также образует воду и углекислый газ, но процесс идет гораздо медленнее и более хитрым путем, нежели простое горение в пламени; температура невелика, а выделение энергии — то же самое. Растения поглощают воду и CO2 из воздуха, соединяют их и создают сахар крахмал и целлюлозу - главные источники энергии животных.

Добывание животными химической энергии для мышц происходит примерно так: из пищи извлекаются простейшие молекулы сахара (точно так же, как и на химическом заводе извлекается спирт из древесной массы), которые запасаются в скоплениях, представляющих собой молекулы нерастворимого «животного» крахмала. Этот запас молекул крахмала расщепляется по мере надобности, поддерживает снабжение мышц сахаром. Когда мышцы сокращаются и производят работу, сахар в две стадии превращается в воду и углекислый газ. Из своей растительной пищи животные еще запасают жиры и «сжигают» их для согревания тела.

Затем все то, что растрачивается человеком и животными, вновь воссоздается растениями, и опять все готово к употреблению. Как же растения делают это? Мы не можем «обратить» действие пламени и «возродить» сгоревшие вещества. Как же растения ухитряются проделывать такой «синтез жизни», сжимая пружинки межмолекулярных сил и закрывая защелки? Поскольку «открывание защелки» приводит к выделению химической энергии, растения должны вкладывать ее при создании агрегата. Им необходимо как снабжение энергией, так и устройство, которое использовало бы ее для синтеза молекул H2O и CO2 в молекулы сахара и крахмала. Солнечный свет снабжает их энергией - порциями световых волн, так сказать, в «расфасованном по пакетикам» виде, а все операции производятся такими «умными» молекулами растения, как зеленый хлорофилл. На солнечном свету зеленый лист растения поглощает CO2 и создает крахмал. Таким образом, растительная и животная жизнь образует цикл, который начинается с воды, углекислого газа и солнечного света и заканчивается водой, углекислотой, теплом и механической энергией животных. Все наши машины, работающие на угле, нефти, ветре, падающей воде, все животные, потребляющие пищу, в конечном итоге получают свое топливо от Солнца.

Просто о сложном – Химическая энергия

  • Галерея изображений, картинки, фотографии.
  • Энергия химической реакции – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Энергия химической реакции.
  • Ссылки на материалы и источники – Химическая энергия.

Энергетика химической промышленности занимает одно из основных мест в современной индустрии. Без ее участия было бы невозможно провести технологические процессы. Энергетика в большой мере служит для обеспечения жизнедеятельности человека.

Существуют различные типы энергии:

  • электрическая;

  • тепловая;

  • ядерная и термоядерная;

  • световая;

  • магнитная;

  • химическая;

  • механическая.

Абсолютно все химические производства потребляют энергию. Процессы отрасли связаны либо с использованием, либо с взаимным обращением энергии. Электрическая энергия используется для электрохимических, электротермических и электромагнитных процессов. Это электролиз, плавление, нагревание, синтез. Для процессов измельчения, смешивания, работы компрессоров и вентиляторов используется превращение электрической энергии в механическую.

Для протекания физических процессов, которые не сопровождаются нагреванием, плавлением, дистилляцией, сушкой, то есть химическими реакциями, используется тепловая энергия. Химическая энергия используется в гальванических приборах, где превращается в электрическую. Световая энергия применяется для осуществления фотохимических реакций.

Топливная база энергетики для химпромышленности

В энергетике химической промышленности горючие ископаемые и их производные представляют собой основной источник потребляемой энергии. Энергоемкость производства определяется расходом энергию на единицу изготавливаемой продукции.
Энергетика включает в себя добычу энергоресурсов (нефти, газа, угля, сланца) и их переработку, а также специальные виды транспорта. К ним относятся нефтепроводы, газопроводы, линии электропередачи и продуктопроводы.

Топливная область энергетики является и сырьевой базой для нефтехимической и химической промышленности. Вся ее продукция подвергается термической обработке для выделения отдельных компонентов (например, кокс из угля, этан, этилен, бутан, пропан из нефти и газов). Только природный газ используется в чистом виде для производства химических продуктов, таких как аммиак, метиловый спирт.

Энергетика развивается динамично и быстро, провоцируя развитие научно-технического прогресса. На использование энергетических ресурсов спрос растет все больше, в связи с этим поиск месторождений и создание новых производств – приоритетные составляющие индустрии. Однако эта область приводит к многочисленным проблемам в экономике, политике, географии, экологии, которые имеют глобальный характер.

Наиболее развивающиеся сегменты энергетики – нефтяная и нефтеперерабатывающая, а также газовая отрасли. Добыча природных ископаемых занимает весомое место в мире, а их месторождения иногда порождают конфликты между государствами. Нефть является важным энергоносителем, после ее переработки получают массу нужных для деятельности человека продуктов. В их списке керосин, бензин, различные виды топлива и нефтяных масел, мазут, гудрон и прочие. Потребность в нефтеперерабатывающей отрасли возникла с развитием транспорта и авиации для его обеспечения топливом. Газовая промышленность является самой прогрессирующей и перспективной областью. Природный газ – основное сырье для химических производств и его использование очень различно.

Выставка «Химия» осенью в большом объеме и масштабе представит новейшие технологии и разработки в области энергетики химической промышленности . На данной выставке производители и потребители могут не только ознакомиться с товаром и ассортиментом, а также заключить новые сделки, наладить связи как с отечественными, так и с зарубежными партнерами. Как отмечают специалисты, «Химия» оказывает огромное влияние на развитие и продвижение новых технологий. Кроме того, на ней освещаются не только новые методы и достижения в науке и технике, а и средства индивидуальной и коллективной защиты на производстве.

Выставка, организуемая ЦВК «Экспоцентр», проходит в Москве с 1965 года. А специалисты «Экспоцентра» позволяют провести подобные мероприятия на самом высоком уровне. Поэтому его и выбирают неоднократно в качестве проведения подобных мероприятий как отечественные, так и зарубежные организаторы.


Цель работы Ознакомление с технологией подготовки воды для АЭС методом ионного обмена и сравнение качества воды: для технологических нужд АЭС, питьевой и озерной. Ознакомление с технологией подготовки воды для АЭС методом ионного обмена и сравнение качества воды: для технологических нужд АЭС, питьевой и озерной.


Задачи работы Задачи работы изучить требования, предъявляемые к воде, используемой для технологических нужд на современной АЭС на примере Калининской АЭС. изучить требования, предъявляемые к воде, используемой для технологических нужд на современной АЭС на примере Калининской АЭС. ознакомиться с теорией метода ионного обмена, ознакомиться с теорией метода ионного обмена, посетить водозаборную станцию г. Удомля и ознакомиться с химическим составом питьевой воды и озерной воды. посетить водозаборную станцию г. Удомля и ознакомиться с химическим составом питьевой воды и озерной воды. сравнить показатели химического анализа питьевой воды и воды II контура АЭС. сравнить показатели химического анализа питьевой воды и воды II контура АЭС.


Задачи работы Задачи работы посетить химический цех Калининской АЭС и ознакомиться: посетить химический цех Калининской АЭС и ознакомиться: с процессом подготовки воды на химической водоочистке; с процессом очистки воды на блочной обессоливающей установке; посетить экспресс-лабораторию II контура; посетить экспресс-лабораторию II контура; ознакомиться теоретически с работой специальной водоочистки. ознакомиться теоретически с работой специальной водоочистки. сделать выводы о значении ионного обмена при подготовке воды. сделать выводы о значении ионного обмена при подготовке воды.


К оборудованию АЭС предъявляются жесткие требования безопасности, надежности и экономичности работы. К оборудованию АЭС предъявляются жесткие требования безопасности, надежности и экономичности работы. Водно-химический режим АЭС должен быть организован так, чтобы коррозия и другие воздействия на оборудование и трубопроводы систем АЭС не приводили к нарушению пределов и условий её безопасной эксплуатации. Водно-химический режим АЭС должен быть организован так, чтобы коррозия и другие воздействия на оборудование и трубопроводы систем АЭС не приводили к нарушению пределов и условий её безопасной эксплуатации. Актуальность
















Сравнительные характеристики питьевой воды и воды II контура АЭС Показатель Единица измерения Питьевая вода ПДК Вода II контура Контрольные значения Feмг/л0,0945,00,005








Принципиальная схема обессоливающей части химводоочистки (ионирование) На подпитку БСН ФСД 14 ОH II БЧОВ ОH I 10 H I H II 78 Предварительно очищенная (осветленная) вода




Через электромагнитные фильтры пропускают 100% конденсата, через фильтры смешанного действия возможно пропускать как 100% воды, так и часть ее. Так при одном работающем фильтре смешанного действия (очистка 20% конденсата) удельная электрическая проводимость уменьшилась: χ=0,23 мкСм/см – до блочной обессоливающей установке и χ=0,21 мкСм/см – после блочной обессоливающей установки.


На энергоблоке с реакторами типа ВВЭР-1000 имеется четыре замкнутых контура сбора и переработки сточных вод: организованных протечек и продувочной воды первого контура; борного концентрата; продувочной воды парогенераторов; трапных вод и вод спецпрачечной. Данные установки включают в себя: механические фильтры, Н-катионитные и ОН- анионитные фильтры.


Заключение Все дренажи с оборудования предочистки и химводоочистки собираются в подземном баке дренажных вод. После нейтрализации вода подаётся на фильтровальный блок полигона глубинного захоронения. О тстоянная вода нагнетается в скважины, на глубину около 1,5 км. Таким образом, введение в эксплуатацию полигона глубинного захоронения исключает возможность сброса промышленных нерадиоактивных стоков в окружающую среду.


Заключение Подготовка воды методом ионного обмена позволяет достигать требуемых значений, необходимых для безопасной, надежной и экономичной работы оборудования. Однако это достаточно дорогостоящий процесс: себестоимость 1м 3 питьевой воды – 6,19 руб., а себестоимость 1м 3 химически обессоленной воды составляет 20,4 руб. (данные 2007 г.) - для чего применяют замкнутые циклы циркулирования воды.



VI международный конкурс научно-образовательных проектов

«Энергия будущего»

Конкурсная работа

Роль химии в энергетике: подготовка химически обессоленной воды

методом ионного обмена для АЭС

МОУ гимназия №3 им.
, 10 «а» класс

Руководители:

Лаборант химцеха КАЭС

– учитель физики МОУ гимназии №3

Контактные телефоны:

Аннотация

Калининская АЭС является крупнейшим водопотребителем Удомельского района.

В данной работе представлена информация о требованиях, предъявляемых к качеству питьевой и контурной воды. Приведены сравнительные таблицы и гистограммы химических показателей питьевой, озерной и воды II контура. Дается краткое описание об итогах посещения водозаборной станции и химического цеха Калининской АЭС. Также дается краткое описание теории ионного обмена и описание принципиальных схем химводоочистки и блочнаой обессоливающей установки; также дается краткое теоретическое описание принципа очистки воды от радиоактивных загрязнений – спецводоочистки.

Данная работа помогает повысить мотивацию к изучению химии, физики, знакомит с химическими технологиями, применяемыми в энергетике на примере Калининской АЭС.

1.Введение 3

2.Обзор литературы по вопросам подготовки воды методом 4

ионного обмена

2.1.Принцип работы АЭС с реакторами типа ВВЭР-1000 4

2.2.Требования, предъявляемые к воде, используемой для

технологических нужд на АЭС 5

2.3.Химические показатели качества природных и контурных вод. 5

2.4.Теория ионного обмена 6

2.5.Рабочий цикл ионообменной смолы 9

2.6.Особенности применения ионообменных материалов 10

3.Практическое исследование 11

3.1.Посещение водозаборной станции 11

3.2.Посещение Калининской АЭС 13

3.3.Описание принципиальной схемы химводоочистки 15

3.4.Описание принципиальной схемы

блочной обессоленной установки 18

3.5.Теоретическое описание принципа работы

специальной водоочистки 20

4.Заключение 20

5.Список литературы 22

1. Введение

1.1. Цель работы:

ознакомление с технологией подготовки воды для АЭС методом ионного обмена и сравнение качества воды: для технологических нужд АЭС, питьевой и озерной.

1.2. Задачи работы:

1. изучить требования, предъявляемые к воде, используемой для технологических нужд на современной АЭС на примере Калининской АЭС.

2. ознакомиться с теорией метода ионного обмена,

3. посетить водозаборную станцию г. Удомля и ознакомиться с химическим составом питьевой воды и озерной воды.

4. сравнить показатели химического анализа питьевой воды и воды II контура АЭС.

5. посетить химический цех Калининской АЭС и ознакомиться:

¾ с процессом подготовки воды на химической водоочистке;

¾ с процессом очистки воды на блочной обессоливающей установке;

¾ посетить экспресс-лабораторию II контура;

¾ ознакомиться теоретически с работой специальной водоочистки.

6. сделать выводы о значении ионного обмена при подготовке воды.

1.3. Актуальность

Энергетическая стратегия России предусматривает почти удвоенное производство электроэнергии с 2000 до 2020 г. С преимущественным ростом атомной энергетики : относительная доля выработки электроэнергии на АЭС за этот период должна увеличится с 16% до 22 %.

К оборудованию АЭС как ни к какому другому, предъявляются требования безопасности , надежности и экономичности работы.

Одним из важнейших факторов, влияющих на надежную и безопасную работу АЭС, является соблюдение водно-химического режима и поддержание показателей качества воды на уровне установленных норм.

Водно-химический режим АЭС должен быть организован таким образом, чтобы обеспечивалась целостность барьеров (оболочек твэлов, границы контура теплоносителя, герметичных ограждений, локализующих систем безопасности) на пути возможного распространения радиоактивных веществ в окружающую среду. Коррозионное воздействие теплоносителя и других рабочих сред на оборудование и трубопроводы систем АЭС не должно приводить к нарушению пределов и условий её безопасной эксплуатации. Водно-химический режим должен обеспечивать минимальное количество отложений на теплопередающих поверхностях оборудования и трубопроводов, так как это приводит к ухудшению теплопередающих свойств оборудования и, как следствие, сокращению сроков эксплуатации оборудования.

2. Обзор литературы по вопросам подготовки воды методом ионного обмена

2.1. Принцип работы АЭС с реакторами типа ВВЭР-1000

Принцип работы большинства существующих АЭС основан на использовании тепла, выделяющегося при расщеплении ядра 235U под действием нейтронов. В активной зоне реактора под действием нейтронов ядро 235U расщепляется, выделяя энергию и нагревая теплоноситель – воду.

Ядерное топливо отдает тепловую энергию теплоносителю первого контура, которым является вода под высоким давлением (16 МПа), на выходе из реактора, температура воды 3200. Далее осуществляется передача тепловой энергии воде второго контура. Прямого контакта между теплоносителем и водой второго контура нет. Теплоноситель циркулирует по замкнутому контуру: реактор – парогенератор – главный циркуляционный насос – реактор. Таких контуров четыре. В парогенераторе теплоноситель первого контура нагревает воду второго контура до парообразования. Пар поступает на турбину, которая вращается за счет этого пара. Такой пар называется рабочим телом. Турбина непосредственно связана с электрическим генератором, который вырабатывает электрическую энергию. Дальше отработанный пар с низким давлением поступает в конденсатор, где происходит его конденсация, за счет охлаждения озерной водой. Потом дополнительная очистка и возвращение в парогенератор. И так цикл повторяется: испарение, конденсация, испарение.

https://pandia.ru/text/77/500/images/image002_125.gif" width="408" height="336">

рис. 1. Технологическая схема двухконтурной АЭС:

1 – реактор; 2 – турбогенератор; 3 – конденсатор; 4 – питательный насос; 5 – парогенератор; 6 – главный циркуляционный насос.

2.2. Требования, предъявляемые к воде, используемой для технологических нужд на АЭС

С ростом параметров пара и воды усилилось воздействие водно-химических режимов. Это привело к росту удельных тепловых нагрузок поверхностей нагрева. В этих условиях даже незначительные отложения на внутренних поверхностях труб вызывают перегрев и разрушение металла. Высокие параметры пара (давление и температура) увеличивают его растворяющую способность в отношении примесей, содержащихся в питательной воде. В результате этого возрастает интенсивность заноса проточной части турбин, что может привести к снижению экономичности блоков и в некоторых случаях к ограничению их мощности, снижению срока эксплуатации оборудования.

Устранение недостатков водно-химических режимов необходимо не только при нарушениях, создающих аварийную ситуацию, но и при кажущихся незначительных отклонениях от норм. Так, например, из опыта эксплуатации следует, что:

§ отложения солей и продуктов коррозии на лопатках цилиндра высокого давления турбин блоков 300 МВт в количестве 1 кг вызывают увеличение давления в регулирующей ступени турбины на 0,5 – 1 МПа (5 – 10 кгс/см2) и приводят к снижению мощности турбины на 5 – 10 МВт;

§ отложение продуктов коррозии на внутренней и наружной поверхностях труб подогревателя высокого давления в количестве 300 – 500 г/ м2 снижают температуру подогрева питательной воды на 2 – 30 С и ухудшают экономичность блока;

§ отложения в пароводяном тракте блоков увеличивают его гидравлическое сопротивление и потери энергии на прокачивание воды и пара. Рост сопротивления тракта блока 300 МВт на 1 МВт (10 кгс/см2) приводит к перерасходу 3 млн. кВт · ч электроэнергии в год.

Для обеспечения требований, предъявляемых к обеспечению водно-химического режима на АЭС, служат следующие системы:

§ химическая водоочистка;

§ система конденсации и дегазации;

§ блочная обессоливающая установка;

§ установка коррекционной обработки рабочей среды первого и второго контура;

§ деаэраторы;

§ система продувки парогенератора;

§ установка очистки продувочной воды парогенератора (специальная водоочистка);

§ система продувки-подпитки первого контура.

2.3. Химические показатели качества природных и контурных вод

Водный теплоноситель для заполнения энергетических контуров и их подпитки готовится из природных вод на водоподготовительных установках различных типов и содержит обычно те же примеси, которыми характеризуется природная вода, но в существенно меньших (на несколько порядков) концентрациях.

К основным показателям качества воды относят следующие.

Содержание грубодисперсных (взвешенных) веществ , присутствующих в контурных водах – в виде шлама, состоящего из трудно растворимых соединений типа СаСО3, СаSO4, Mg(OH)2, частиц продуктов коррозии конструкционных материалов (Fe3O4, Fe2O3 и др.), содержание которых определяется фильтрованием через бумажный фильтр с подсушиванием при С или косвенным методом по прозрачности воды.

Солесодержание – суммарная концентрация в воде катионов и анионов, подсчитанная по общему ионному составу и выраженная в миллиграммах на килограмм. Для характеристики и контроля вод и конденсатов с малым солесодержанием при отсутствии растворенных газов СО2 и NH3 часто используется показатель удельная электрическая проводимость . Конденсат с солесодержанием около 0,5 мг/кг имеет удельная электрическая проводимость 1мкСм/см.

Жесткость воды общая ЖО - суммарная концентрация кальция (кальциевая жесткость ) и магния (магниевая жесткость ), выраженная в эквивалентных единицах миллиграмм-эквивалент на килограмм или микрограмм-эквивалент на килограмм:

ЖО = ЖСа + ЖMg

Окисляемость воды выражается расходом сильного окислителя (обычно KMnO4), потребного для окисления в стандартных условиях органических примесей воды, и измеряется в миллиграммах на килограмм KMnO4 или O2, эквивалентного расходу перманганата калия.

Показатель концентрации водородных ионов (pH) воды характеризует реакцию воды (кислая, щелочная, нейтральная) и учитывается при всех видах обработки и использования воды.

Удельная электрическая проводимость (χ) определяется подвижностью ионов в растворе, помещенном в электрическое поле; для чистой воды ее величина равна 0,04 мкСм/см, для обессоленных турбинных конденсатов χ = 0,1мкСм/см (микросименс на сантиметр).

2.4. Теория ионного обмена

Подготовка воды для заполнения контуров АЭС и восполнения потерь в них осуществляется за счет обессоленной воды, приготавливаемой методом химического обессоливания в две или три ступени исходной маломинерализованной воды (Азот" href="/text/category/azot/" rel="bookmark">азота N и многих других элементов. Каменный уголь в воде практически нерастворим, но при контакте с кислородом, растворенном в воде, происходит медленное окисление, приводящее к образованию различных окисленных групп. На поверхности угля образуются гидроксильные или карбоксильные группы, прочно связанные с основой угля. Если условно обозначить эту неизменившуюся основу буквой R, то структуру такого материала можно описать формулой ROH или RCOOH в зависимости от того, какая окисленная группа гидроксила ОН или карбоксила СООН образовалась на его поверхности при окислении. Эти группы способны к диссоциации, т. е. в водной среде происходят процессы:

RCOOH = RCOO - + H+.

Если в воде присутствуют катионы, например, кальция, то становятся возможными процессы катионного обмена:

2RCOOH+Ca2+ = (RCOO)2Ca +2 H+.

При этом ионы кальция фиксируются на угле, а в раствор поступает эквивалентное количество ионов водорода. Обмен может совершаться и на другие ионы, например ионы натрия, железа, меди и т. д.

2.4.2. Катиониты и аниониты.

Все материалы, способные к обмену катионов, называются катионитами. Материалы, способные к обмену анионов, называются анионитами. Они имеют иные ионообменные группы, обычно NH2 или NH, которые с водой образуют NH2OH.

Катиониты способны обмениваться с раствором положительно заряженными ионами (катионами). Процесс обмена катионами между катионитом, погруженным в очищаемую воду, и этой водой называется катионированием. Аниониты способны обмениваться с электролитом отрицательно заряженными ионами. Процесс обмена анионами между анионитом и обрабатываемой водой называется анионированием.

На рис. 2 схематично изображена структура зерен ионитов. Практически нерастворимое в воде зерно окружено диссоциированными – положительно заряженными для катионита (рис. 2,а) и отрицательно заряженными для анионита (рис. 2,б). В самом зерне ионита вследствие отделения ионов отрицательный заряд возникает для катионита и положительный для анионита.

рис. 2. Схема структуры зерен ионита.

a ) – катионит; б) – анионит; 1- твердый многоатомный каркас ионита; 2 – связанные с каркасом неподвижные ионы активных групп (потенциалообразующие ионы); 3 – ограниченно подвижные ионы активных групп, способные к обмену (противоионы).

Большинство применяемых в настоящее время ионообменных материалов относится к разряду синтетических смол. Молекулы их состоят из тысяч, а иногда и десятков тысяч связанных между собой атомов. Ионообменные материалы являются своеобразными твердыми электролитами. В зависимости от характера активных групп ионита его подвижные, способные к обмену ионы могут иметь положительный или отрицательный заряд. Когда положительным, подвижным катионом является ион водорода H+, то такой катионит является по существу многовалентной кислотой, так же как анионит с обменным гидроксильным ионом ОН - является многовалентным основанием.

Подвижность способных к обмену ионов ограничивается расстояниями, при которых не теряется взаимность их с неподвижными ионами противоположного заряда на поверхности ионита. Это ограниченное вокруг молекулами ионита пространство, в котором находятся подвижные и способные к обмену ионы, называют ионной атмосферой ионита.

Обменная емкость ионитов зависит от числа активных групп на поверхности зерен ионита. Поверхностью ионита является также поверхность углублений, пор, каналов и пр. Поэтому предпочтительнее иметь иониты с пористой структурой. Зернистость отечественных и зарубежных ионитов характеризуется фракциями в пределах от 0,3 до 1,5 мм при среднем диаметре зерен 0,5-0,7 мм и коэффициенте неоднородности около 2,0-2,5.

Существуют иониты, в которых подвергаются диссоциации практически все содержащиеся в их составе функциональные группы или только незначительный процент их, в их соответствии с чем различают катиониты сильнокислотные - способны к поглощению катионов (натрий Na+, магний Mg2+ и др.); и слабокислотные – способны к поглощению катионов жесткости (магний Mg2+ , кальций Ca2+). Аналогично деление на две группы анионитов: сильноосновные – способны к поглощению как сильных, так и слабых кислот (например, угольной , кремниевой и др.). и слабоосновные - способны к поглощению преимущественно анионитов сильных кислот (, и др.).

2.5. Рабочий цикл ионообменной смолы

Слой ионита (ионообменная смола) по ходу движений обрабатываемой воды в процессе ионного обмена можно разделить на три зоны.

Первая зона – это зона истощенного ионита, так как все находящиеся в ней противоионы использованы для обмена на ионы обрабатываемой воды. В этой зоне продолжается селективный обмен между ионами самой обрабатываемой воды, т. е. наиболее подвижные ионы, содержащиеся в воде, вытесняют из ионита менее подвижные (рис. 3).

Вторую зону называют зоной полезного обмена. Здесь начинается и заканчивается полезный обмен противоионов ионита на ионы обрабатываемой воды. В этой зоне частота обмена ионов обрабатываемой воды на противоионы ионита преобладает над частотой обратного обмена ионов обрабатываемой воды и поглощенных ионитом ионов.

Третья зона – это зона неработавшего, или свежего, ионита. Проходящая через этот слой ионита вода содержит только противоионы ионита и поэтому не изменяет ни своего состава, ни состава ионита.

По мере работы фильтра первая зона – зона истощенного ионита – возрастает, заставляя работающую зону 2 опускаться за счет уменьшения зоны свежего ионита 3, и, наконец, выходит за нижнюю границу загрузки фильтра. Здесь высота третьей зоны равна нулю. В фильтрате появляется и начинает возрастать концентрация наименее сорбируемых ионов, и полезная работа ионитного фильтра заканчивается.

Технология процесса регенерации.

Процесс регенерации ионообменных фильтров состоит из трех главных операций:

Взрыхления слоя ионита (взрыхляющая отмывка);

Пропуска через него рабочего раствора реагента с заданной скоростью;

Отмывки ионита от продуктов регенерации.

Взрыхляющая отмывка.

При эксплуатации фильтров всегда происходит образование продуктов постепенного разрушения и измельчения ионитов, которые необходимо периодически удалять. Это достигается с помощью взрыхляющих отмывок, данная операция обязательна перед каждой регенерацией.

Очень важно соблюдать условия проведения отмывок, которые должны обеспечить более полное удаление из фильтра мелких пылевидных частей ионообменных материалов. Кроме того, взрыхляющая отмывка устраняет уплотнение материала, затрудняющее контакт регенерационного раствора с зернами ионита.

Взрыхление проводится потоком воды снизу вверх со скоростью, обеспечивающей приведение всей массы ионообменного материала во взвешенное состояние. Когда вода на выходе из фильтра становится прозрачной, взрыхление прекращают.

Пропуск регенерационного раствора.

Регенерация и отмывка ионита от продуктов регенерации обычно проводятся с одной и той же скоростью. Пропуск реагентов при этом возможен как по ходу обрабатываемой воды – прямотоком, так и в противоположном движению обрабатываемой воды направлении – противотоком, в зависимости от принятой технологии.

При пропуске регенерационных растворов происходит обратная замена ионов, поглощенных ионитом, на ионы регенерационного раствора (содержащие Н+ или ОН - ион). Иониты при этом переводятся в свою первоначальную ионную форму.

Регенерация бывает двух типов: внутренней и выносной. Выносная регенерация используется в фильтрах смешанного действия на блочной обессоливающей установке, чтобы избежать попадания регенерационных вод во второй контур.

Отмывка остатков продуктов регенерации.

Последняя операция регенерационного цикла – отмывка – имеет целью удалить из него остатки продуктов регенерации.

Отмывка фильтрующего слоя прекращают при достижении определенных показателей качества отмывочной воды. Фильтр готов к эксплуатации.

Данные процессы позволяют использовать ионит многократно.

2.6. Особенности применения ионообменных материалов на АЭС

Удаление из воды радионуклидов способом ионного обмена основано на том, что многие радионуклиды находятся в воде в виде ионов или коллоидов, которые при соприкосновении с ионитом также поглощаются фильтрующим материалом, но поглощение носит физический характер. Объемная емкость смол по отношению к коллоидам намного ниже, чем к ионам.

На полноту поглощения радионуклидов ионитами оказывает влияние содержание в воде большого количества неактивных элементов, являющихся химическими аналогами радионуклидов.

В условиях ионизирующих излучений используются только особо чистые иониты в водородной и гидроксильной форме (сильноосновные аниониты и сильнокислотные катиониты). Это обусловлено недостаточной стойкостью ионообменных материалов к действию ионизирующих излучений и более жесткими требованиями к водному режиму первого контура АЭС.

3. Практическое исследование

3.1. Посещение водозаборной станции

В 1980 году была введена в эксплуатацию первая очередь водозаборной станции города Удомля. Основной задачей, которой является добыча и подготовка воды для потребительских нужд. Вода из артезианских скважин насосами подается на очистку, которая включает в себя: аэрацию и фильтрование. Затем воду хлорируют и подают потребителям.

14 декабря 2007 года состоялась экскурсия на водозаборную станцию с целью ознакомления с процессами: подготовки воды, определения основных показателей качества питьевой и озерной воды.

Определение рН растворов на рН-метре на водозаборной станции.

Подготовка проб для определения железа на фотоколориметре КФК-3.

https://pandia.ru/text/77/500/images/image018_6.jpg" width="275" height="214 src=">

Определение хлоридов методом обратного титрования.

Определение солей жесткости.

Полученные в ходе совместных исследований с сотрудниками водозабора данные приведены в таблицах.

Таблица 1. Сравнение показателей качества озерной (на примере озера Кубыча) и питьевой воды.

Показатель

Единица измерения

Озерная вода

Питьевая вода

оз. Кубыча

Цветность

Мутность

Жесткость

Минерализация

ПДК* - предельно-допустимая концентрация - регламентируется ГОСТом качества воды.

Гистограмма 1. Показатель рН озера Кубыча, питьевой воды и предельно-допустимая концентрация.

https://pandia.ru/text/77/500/images/image024_26.gif" width="336" height="167 src=">

Гистограмма 3. Содержание солей жесткости в озере Кубыча, питьевой воде и предельно-допустимая концентрация.

25 декабря" href="/text/category/25_dekabrya/" rel="bookmark">25 декабря 2007 года состоялась экскурсия на Калининскую атомную станцию с целью ознакомления с работой подразделений химического цеха. В ходе экскурсии посетили химводоочистку и ознакомились с технологией производства химически обессоленной воды. При посещении машинного зала познакомились с технологией очистки основного конденсата второго контура, с работой экспресс-лаборатории второго контура и получили данные о качестве воды второго контура.

Интересно сравнить некоторые химические показатели качества воды второго контура Калининской АЭС и питьевой воды получаемой на водозаборе.

Таблица 2.Сравнительные характеристики питьевой воды и воды II контура АЭС.

* - данные не указываются, так как концентрация жесткости меньше чувствительности метода определения данного показателя.

Вывод: 1. Как следует из Таблицы 2 предельно-допустимая концентрация питьевой воды и контрольные значения воды второго контура имеют существенные отличия. Это вызвано более высокими требованиями, предъявляемыми к воде, используемой для технологических нужд, необходимыми для безопасной и надежной эксплуатации оборудования.

2. Питьевая вода, получаемая на водозаборе, имеет высокое качество, химические показатели значительно ниже предельно-допустимой концентрации примесей, содержащихся в питьевой воде.

3. Вода второго контура соответствует контрольным значениям. Это достигается очисткой воды методом ионного обмена при ее подготовке и доочисткой конденсата на блочных обессоливающих установках.

Гистограмма 4. Содержание хлоридов в питьевой воде и воде второго контура Калининской АЭС.

https://pandia.ru/text/77/500/images/image027_24.gif" width="362" height="205 src=">

Высокие требования к содержанию солей жесткости в воде второго контура вызваны тем, что на стенках теплообменных аппаратов появляются накипеобразующие отложения солей. Это приводит: к ухудшению теплообмена, уменьшению гидравлического сопротивления, снижению сроков эксплуатации оборудования.

Гистограмма 6. Содержание железа в питьевой воде и воде второго контура.

Системы охлаждения" href="/text/category/sistemi_ohlazhdeniya/" rel="bookmark">системы охлаждения обмоток статора генератора, емкостей электролизной, спецпрачечной. Производительность химической водоочистки по обессоленной воде = 150м3.

Описание основной технологической схемы обессоливающей части химической водоочистки.

Осветленная вода после механического фильтра предочистки поступает на цепочку Н-катионитных фильтров. В Н-катионитном фильтре 1-й ступени, загруженным слабокислотным катионитом, происходит очистка воды от ионов жестокости (Сa2+ и Mg2+). В Н-катионитном фильтре 2-й ступени, загруженным сильнокислотным катионитом, происходит доочистка воды от оставшихся после 1-й ступени ионов жесткости и ионов Na+.

Н-катионитная вода после 2-й ступени собирается в баки частичнообессоленой воды катионитного фильтра.

Из бака частично обессоленной воды насосами вода направляется на цепочку ОН-анионитовых фильтров. В ОН-анионитовом фильтре 1-й ступени, загруженным низкоосновным анионитом, происходит очистка воды от анионов сильных кислот (https://pandia.ru/text/77/500/images/image010_45.gif" width="37" height="24 src=">). В ОН-анионитовом фильтре 2-й ступени, загруженным высокоосновным анионитом, происходит доочистка воды от оставшихся после 1-й ступени анионов сильных кислот и анионов слабых кислот (; ).

ОН-анионированная вода после анионитного фильтра 2-й ступени собирается в баке собственных нужд.

Обессоленная вода из бака собственных нужд насосом направляется на 3-ю ступень обессоливания – фильтр смешанного действия. Фильтр смешанного действия загружен смесью сильнокислотного катионита и сильноосновного анионита в соотношении 1:1. На 3-й ступени обессоливания происходит доочистка обессоленной воды от катионов и анионов до концентраций, требуемых стандартом предприятия СТП-ЭО. На общем трубопроводе химически обессоленная вода после фильтра смешанного действия установлены 2 параллельно включенные ловушки фильтрующих материалов (1 – в работе; 1 – в резерве на случай ремонта первой) химически обессоленной воды из бака собственных нужд и после фильтра смешанного действия выдается потребителям: на подпитку 2-го контура в машзал; на подпитку 1-го контура в спецкорпус; в схему предочистки химводоочистки, на склад химреагентов, на спецпрачечную, на электролизную, на пуско-резервную котельную, в баки запаса химически обессоленной воды (V=3000 м3).

Для повышения надежности работы химводоочистки и создания запаса химобессоленной воды в схему обессоливающей части химводоочистки включены баки запаса химобессоленной воды (объемом 3000 м3 каждый).

Для предотвращения коррозии металлических трубопроводов в концентрированных и разбавленных растворах кислоты обвязка узла концентрированной кислоты и трасса подачи регенерационного раствора кислоты от смесителя до Н-катионитных фильтров выполнен из трубопроводов, футерованных фторопластом.

Ввод в действие" href="/text/category/vvod_v_dejstvie/" rel="bookmark">введен в действие в августе 2007 года, срок эксплуатации около 20 лет, радиус распространения стоков около 3 км.

Таким образом, можно сделать вывод о том, что введение в эксплуатацию полигона глубинного захоронения исключает возможность сброса промышленных нерадиоактивных стоков в окружающую среду.

3.4. Описание принципиальной схемы блочной обессоливающей установки (конденсатоочистки)

Очистка конденсата на блочной обессоливающей установке осуществляется в две ступени:

Первая ступень – очистка от нерастворенных продуктов коррозии конструкционных материалов на электромагнитных фильтрах, загруженных стальными мягкомагнитными шариками;

Вторая ступень – очистка от растворенных ионных примесей и коллоидно-дисперсных веществ на ионитных фильтрах смешанного действия.

Конденсат турбины подается конденсатными насосами первой ступени на электромагнитный фильтр, где очищается от механических примесей, главным образом, нерастворенных продуктов коррозии конструкционных материалов.

После электромагнитного фильтра конденсат поступает во всасывающий коллектор конденсатных насосов второй ступени (при отключенной ионитной части блочной обессоливающей установке), либо направляется на фильтре смешанного действия для очистки от растворенных и коллоидно-дисперсных примесей.

Удаление задержанных на шариковой загрузке ферромагнитных и немагнитных оксидов железа производится путем промывки электромагнитного фильтра обессоленной водой снизу – вверх при снятом напряжении на катушках и размагниченном состоянии шариков.

При неудовлетворительном качестве конденсата за работающим фильтром смешанного действия фильтр выводится на регенерацию, в работу включается резервный фильтр смешанного действия.

Выведенная на регенерацию смешанная смола перегружается в фильтр – регенератор, где гидравлически делится на катионит и анионит. Для перевода катионита и анионита в рабочую форму производится их регенерация.


Рис.5. Схема блочной обессоливающей установки.

ЭМФ – электромагнитный фильтр; ФСД – фильтр смешанного действия; ЛФМ – ловушка фильтрующих материалов.

Все регенеративные воды подаются на баки радиационного контроля и после радиационного контроля при непревышении установленных уровней откачиваются в баки-нейтрализаторы химводоочистки.

После каждого фильтра смешанного действия установлены фильтры – ловушки ионитов.

При посещении Калининской АЭС были получены следующие данные о работе блочной обессоливающей установке:

Через электромагнитные фильтры пропускают 100% конденсата, через фильтр смешанного действия возможно пропускать как 100% воды, так и часть ее. Так при одном работающем фильтре смешанного действия (очистка 20% конденсата) удельная электрическая проводимость уменьшилась: χ=0,23 мкСм/см – до блочной обессоливающей установке и χ=0,21 мкСм/см – после блочной обессоливающей установки.

3.5. Теоретическое описание принципа работы специальной водоочистки

Ионообменные фильтры первого контура, как правило, работают непрерывно, причем на них ответвляется примерно 0,2 – 0,5% основного расхода воды в контуре.

Очистка воды первого контура производится на установке спецводоочистки, состоящей из фильтра смешанного действия. Она служит как для удаления продуктов коррозии из реакторной воды, так и для регулирования физико-химического состава воды (поддерживаются нормируемые показатели). Установка спецводоочистки улучшает радиационную обстановку, снижая радиоактивность теплоносителя на один-два порядка.

Циркуляционная вода первого контура подается на установку спецводоочистки с главного циркуляционного насоса и возвращается после очистки в контур.

В смешанном слое для обработки радиоактивных вод иониты используются при соотношении катионита и анионита, равном 1:1 или 1:2.

Однородная смесь ионитов (шихта) позволяет удалять из контурной воды загрязнения, случайно поступающие при некачественной отмывке от реагентов фильтров установок, связанных с подпиткой контура, а также от продуктов разложения ионообменных материалов под действием ионизирующего излучения и высокой температуры.

При истощении иониты установок спецводоочистки регенерируются: катионит – азотной кислотой (при этом он переводится в Н-форму), анионит – едким натром или едким кали (переводится снова в ОН-форму).

Заключение

Изучив материалы по технологии производства энергии на АЭС с реакторами типа ВВЭР – 1000, пришли к выводу, что одним из важнейших факторов надежной работы АЭС является качественно подготовленная вода. Это достигается путем применения различных физико-химических методов очистки воды, а именно за счет использования предварительной очистки – осветления и глубокого обессоливания методом ионного обмена.

Особенное впечатление произвело посещение водозаборной станции, а именно выполнение химических анализов с помощью приборов и оборудования, которые не используются в школе. Это повысило доверие к качеству питьевой воды, подаваемой водозаборной станцией на нужды города. Но большее впечатление произвели параметры качества воды, используемой на Калининской АЭС. Большой интерес вызвали технологические процессы подготовки воды в химическом цехе, с которыми ознакомились во время посещения Калининской АЭС.

Подготовка воды методом ионного обмена позволяет достигать требуемых значений, необходимых для безопасной, надежной и экономичной работы оборудования. Однако это достаточно дорогостоящий процесс: себестоимость 1м3 химически обессоленной воды составляет 20,4 руб., а себестоимость 1м3 питьевой воды – 6,19 руб. (данные 2007 г.).

В связи с этим возникает необходимость более экономичного использования химически обессоленной воды, для чего применяют замкнутые циклы циркулирования воды. Для поддержания необходимых параметров воды (удаления поступающих примесей), служит конденсатоочистка (на втором контуре) и спецводоочистка (на первом контуре). Наличие замкнутых циклов предотвращает сброс воды первого и второго контура в окружающую среду, а для промышленных стоков существует система нейтрализации и утилизации, что снижает техногенную нагрузку.

Несмотря на то, что материал, изложенный в проекте, выходит за рамки школьной программы, знакомство с ним мотивирует старшеклассников более глубоко изучать химию, а также сделать осознанный выбор будущей профессии, связанной с атомной энергетикой.

Список литературы.

1. , Сенина -технологические режимы АЭС с ВВЭР: Учебное пособие для вузов. – М.: Издательский дом МЭИ, 2006. – 390 с.: ил.

2. , Мартынова режим атомных электростанций . – М.: Атомиздат, 1976. – 400 с.

3. , Мазо воды ионитами. – М.: Химия, 1980. – 256 с.: ил.

4. , Кострикин водоподготовки. – М.: Энергоиздат, 1981. – 304 с.: ил.

5. , Жгулев энергетических блоков. – М.: Энергоатомиздат, 1987. – 256 с.: ил.

6. , Чурбанова качества воды: Учебник для техникумов. – М.: Стройиздат, 1977. – 135 с.: ил.

Химические реакции сопровождаются выделением или поглощением энергии. Если энергия выделяется или поглощается в виде теплоты, то такие реакции записываются посредством уравнений химической реакций с указанием тепловых эффектов, при этом необходимо указывать фазовый состав реагирующих веществ.

Химические реакции , протекающие с выделением тепла, называются экзотермическими , а с поглощением тепла – эндотермическими.

Изучением тепловых эффектов реакций занимается термохимия. В термохимии тепловой эффект реакции обозначается Q и выражается в кДж.

Термохимия составляет один из разделов химической термодинамики, изучающей переходы энергии из одной формы в другие и от одной совокупности тел к другим, а также возможность, направление и глубину осуществления химических и фазовых процессов в данных условиях. Каждое отдельное вещество или их совокупность представляет собой термодинамическую систему. Если термодинамическая система не обменивается с окружающей средой ни веществом, ни энергией, ее называют изолированной. Такая идеализированная система используется как физическая абстракция при рассмотрении процессов, исключающих влияние внешней среды. Система, обменивающаяся с окружающей средой только энергией, называется закрытой. Если же возможен энергетический и материальный обмен – система открытая.

Состояние системы определяется термодинамическими параметрами состояния – температурой, давлением, концентрацией, объемом и т. д. Система характеризуется, кроме того, такими свойствами как внутренняя энергия U, энтальпия H , энтропия S , энергия Гиббса G . Из изменение в ходе химических реакций характеризуют ее энергетику системы.

Внутренняя энергия системы U складывается из энергии движения и взаимодействия молекул, энергии связи в молекулах, энергии движения и взаимодействия электронов и ядер и т. п.

Абсолютная величина внутренней энергии не может быть определена, но ее изменение при переходе системы из начального состояния в конечное в результате осуществления химического процесса поддается расчету. Если система получает некоторое количество тепла при постоянном давлении Qp, последнее расходуется на изменение внутренней энергии системы ΔU и совершение работы A = PΔV против внешних сил:

Это уравнение выражает закон сохранения энергии или первое начало термодинамики.

Адиабатический процесс – это процесс квазистатического расширения или сжатия газа в сосуде с теплонепроницаемыми стенками. Первый закон термодинамики для адиабатического процесса принимает вид:

Изотермический процесс – это процесс квазистатического расширения или сжатия вещества, находящегося в контакте с тепловым резервуаром, (T = const).

Так как внутренняя энергия идеального газа зависит только от температуры (закон Джоуля), то первый закон термодинамики для изотермического процесса записывается в виде: Q = A.

При изохорическом процессе (V = const) поглощение или выделение тепла (тепловой эффект) связано только с изменением внутренней энергии:

В химии чаще всего рассматривают изобарические процессы (P = const), и тепловой эффект в этом случае называют изменением энтальпии системы или энтальпией процесса:

ΔH = ΔU + PΔV

Энтальпия имеет размерность энергии (кДж). Ее величина пропорциональна количеству вещества; энтальпия единицы количества вещества (моль) измеряется в кДж∙моль –1 .

В термодинамической системе выделяющуюся теплоту химического процесса условились считать отрицательной (экзотермический процесс, ΔH < 0), а поглощение системой теплоты соответствует эндотермическому процессу, ΔH > 0.

Уравнения химических реакций с указанием энтальпии процесса называют термохимическими. Численные значения энтальпии ΔH указывают через запятую в кДж и относят ко всей реакции с учетом стехиометрических коэффициентов всех реагирующих веществ.

Поскольку реагирующие вещества могут находиться в разных агрегатных состояниях, то оно указывается нижним правым индексом в скобках: (т) – твердое, (к) – кристаллическое, (ж) – жидкое, (г) – газообразное, (р) – растворенное.

Например, при взаимодействии газообразных H 2 и Cl 2 образуются два моля газообразного HCl. Термохимическое уравнение записывается так:

При взаимодействии газообразных H 2 и O 2 образующаяся H 2 O может находиться в трех агрегатных состояниях, что скажется на изменении энтальпии:

Приведенные энтальпии образования (реакций) отнесены у стандартным условиям температуры и давления (T = 298 K, P = 101,325 кПа). Стандартное состояние термодинамической функции, например, энтальпии, обозначается нижним и верхним индексами:ΔΗ 0 298 нижний индекс обычно опускают: ΔΗ 0 .

Стандартная энтальпия образования ΔΗ 0 обр – тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях. Энтальпия образования простых веществ принята равной нулю.

Пользуясь табличными значениями ΔΗ 0 обр, ΔΗ 0 сгор, можно рассчитать энтальпии различных химических процессов и фазовых превращений.

Основанием для таких расчетов является закон Гесса, сформулированный петербургским профессором Г. И. Гессом (1841 г.):

«Тепловой эффект (энтальпия) процесса зависит только от начального и конечного состояния и не зависит от пути перехода его из одного состояния в другое».

Из закона Гесса вытекают следующие следствия:

1. Энтальпия реакции равна разности сумм энтальпий образования конечных и начальных участников реакций с учетом их стехиометрических коэффициентов.

ΔH = ΣΔH обр.конечн – ΣΔH обр.нач

2. Энтальпия реакции равна разности сумм энтальпий сгорания начальных и конечных реагентов с учетом их стехиометрических коэффициентов.

ΔH = ΣΔH сгор.нач – ΣΔH сгор.конечн

3. Энтальпия реакции равна разности сумм энергий связей Eсв исходных и конечных реагентов с учетом их стехиометрических коэффициентов.

В ходе химической реакции энергия затрачивается на разрушение связей в исходных веществах (ΣE исх) и выделяется при образованиии продуктов реакции (–ΣE прод).

ΔH° = ΣE исх – ΣE прод

Следовательно, экзотермический эффект реакции свидетельствует о том, что образуются соединения с более прочными связями, чем исходные. В случае эндотермической реакции , наоборот, прочнее исходные вещества.

4. Энтальпия реакции образования вещества равна энтальпии реакции разложения его до исходных веществ с обратным знаком.

ΔH обр = –ΔH разл

5. Энтальпия гидратации равна разности энтальпий растворения безводной соли ΔH раств б/с и кристаллогидрата ΔH раств крист.

Закон Гесса позволяет обращаться с термохимическими уравнениями как с алгебраическими, т. е. складывать и вычитать их, если термодинамические функции относятся к одинаковым условиям.