Цитогенетические исследования - это совокупность методов исследования связи между явлением наследственности и строением клеток (особенно структур клеточного ядра). Цитогенетические исследования играют важную роль в медико-биологических работах, так как с их помощью выясняют генетические особенности, изменчивость (см.), происхождение и эволюцию живых существ.

Объектом цитогенетических исследований служат в первую очередь (см.) человека, животных и растений, имеющие специфические для каждого вида свойства (количество, размеры, особенности строения) и образующие характерный для данного организма кариотип. Поэтому методы цитогенетических исследований используются при построении естественных классификаций живых организмов.

В цитогенетических исследованиях уделяют особое внимание полиплоидии - явлению, связанному с кратным увеличением числа хромосом, сопровождающимся появлением целого ряда новых свойств (увеличение общих размеров, вкусовых качеств фруктов и овощей, жизнестойкости у растений и т. д.). Разработка проблемы полиплоидии имеет практическое значение в , в селекции растений и животных.

С помощью цитогенетических исследований обнаруживают изменения в хромосомах, передающиеся потомству и определенным образом влияющие на признаки организма. Изучают вредные хромосомные перестройки, утрату, выпадение или добавление отдельных хромосом или участков хромосом. Они позволяют выявить участие наследственного фактора в возникновении ряда заболеваний человека (см. Наследственные болезни), в том числе нарушений развития, предрасположенность к злокачественным новообразованиям и т. д. Цитогенетические исследования привели к правильному пониманию природы .

С помощью цитогенетических исследований установлено, например, что в ядрах клеток различных тканей и органов, но только у самок, присутствуют интенсивно окрашиваемые специальными красителями образования, так называемые тельца Барра или (см.). Оказалось, что половой хроматин встречается у многих животных и у человека. Открытие полового хроматина позволило определять человека на клеточном уровне (это имеет особое значение для судебной медицины), диагностировать пол на ранних стадиях беременности и решать ряд других вопросов медицинской практики.

См. также Генетика, Наследственность.

Цитогенетические исследования - микроскопическое изучение особых структур клетки, обусловливающих процессы наследования и развития.

Цитогенетические исследования получают все более широкое применение в клинической медицине. Наиболее простым, быстрым и доступным методом цитогенетического анализа является исследование полового хроматина.

Половой хроматин представляет собой хроматиновое тельце, которое отсутствует у особей мужского пола, а у особей женского пола прилежит к ядерной оболочке.

Таким образом, это тельце может служить цитологическим признаком пола, в связи с чем оно и получило название половой хроматин.

Размеры телец полового хроматина у человека колеблются от 0,7 до 1,2 мк, форма их может варьировать (рис. 1 - 3). У женщин половой хроматин определяется в среднем в 40% ядер (рис. 4). Он образуется одной из Х-хромосом женского кариотипа, находящейся в неактивном, спирализованном состоянии. Половой хроматин можно определить в клетках слизистой оболочки полости рта, влагалища и мочеиспускательного канала, а также в клетках крови, биопсированной кожи, культивируемой ткани взрослого, в эмбриональной ткани, нервных клетках.

Наиболее простая и удобная методика определения полового хроматина в клетках слизистой оболочки полости рта предложена Тири (Н. Thiries) и усовершенствована Сандерсоном (S. Sanderson). Для исследования берут соскоб со слизистой оболочки щек. Материал переносят на предметное стекло, высушивают на воздухе и в течение 10 мин. фиксируют в метиловом спирте. Окраску производят каплей свежефильтрованного ацетоорсеина (1 г синтетического орсеина растворяют в 45 мл ледяной уксусной кислоты, подогревают до кипения и после охлаждения фильтруют, к 45 мл профильтрованного раствора добавляют 55 мл дистиллированной воды и эту смесь фильтруют повторно). При микроскопировании иммерсионным объективом подсчитывают количество хроматинположительных ядер на 100 клеток.

Исследование полового хроматина применяют для цитологического определения пола, быстрой и ранней диагностики заболеваний, связанных с аберрациями половых хромосом (в частности, синдромов Клайнфелтера, Шерешевского-Тернера и др.), характеристики ряда физиологических процессов (в частности, менструального цикла), исследования общих и локальных закономерностей ряда патологических процессов и прежде всего злокачественных новообразований, выяснения действия некоторых терапевтических методов и средств (антибиотиков, кортикостероидов, цитостатических препаратов).

К методам цитогенетического анализа относится также изучение кариотипа (см.).

Установлено, что хромосомный набор человека состоит из 46 хромосом (23 пары), двух половых хромосом (XX - у женщины, XY - у мужчины), 22 пар аутосом (рис. 5) и отличается высоким постоянством в клетках человеческого организма.

В зависимости от длины хромосом и расположения их центромер весь хромосомный набор делится на 7 групп - А, В, С, D, Е, F, G.

Для изучения хромосомного набора человека (кариотипа) используют методы культивирования лейкоцитов периферической крови, фибробластов эмбриональной ткани, культивирование клеток кожи и прямой метод определения хромосомного набора в клетках костного мозга.

Впервые об успешном культивировании неделящихся лейкоцитов сообщил советский биолог Г. К. Хрущев (1935). В 1958 г. Ноуэлл (P. Nowell) предложил использовать для стимуляции деления лейкоцитов вещество, выделенное из бобовых растений,- фитогемагглютинин (ФГА). Культивирование лейкоцитов осуществляют по модифицированной и усовершенствованной методике. 10 мл венозной крови, взятой стерильно в пробирку с гепарином (1 мл ампулированного гепарина разводят в 20 раз раствором Хенкса), помещают на 30-40 мин. в холодильник. Затем стерильно (в боксе) в кровь добавляют 0,7 - 1 мл 10% раствора желатины для ускорения осаждения эритроцитов. После отстаивания крови плазму отсасывают и помещают в стерильную колбу. К плазме добавляют среду 199 либо среду Игла из расчета 1,5 мл среды на 1 мл плазмы.

Для стимуляции митотической активности лейкоцитов в смесь добавляют 0,2 мл ФГА. Полученную клеточную суспензию помещают в термостат при t° 37° на 72 часа. За 2-3 часа до проведения фиксации на каждый флакон (суспензия для культивирования разливается по 1,5-2 мл в стерильные флаконы типа пенициллиновых) добавляют по 0,5-0,75 мкг колхицина (рабочий раствор колхицина: 10 мкг на 1 мл дистиллированной воды) и продолжают культивирование. В дальнейшем культуры центрифугируют в течение 5 мин. при 800 об/мин. Надосадочную жидкость сливают, к ней добавляют 3-5 мл 0,95% раствора цитрата натрия, нагретого до t°37°, который вызывает набухание клеток. В гипотоническом растворе клетки находятся от 15 до 30 мин., после чего надосадочную жидкость сливают, к осадку осторожно добавляют фиксатор (3 ч. абсолютного спирта + 1 ч. ледяной уксусной кислоты), ставят в холодильник на 15 мин., затем повторно центрифугируют и меняют фиксатор. На обезжиренные предметные стекла наносят 1-2 капли клеточной суспензии и высушивают над пламенем либо поджигают фиксатор («жженые» препараты). Препараты красят полихромной синью Унны, ацетоорсеином или по Романовскому. Хромосомный набор изучают при помощи иммерсионной микроскопии в 100 метафазных пластинах.

Для изучения хромосом используют также прямой метод определения хромосомного набора в клетках костного мозга: 1 мл свежеаспирированного пунктата костного мозга помещают в колбу с 30 мл среды 199 и 3 мл раствора колхицина (10 мкг на 1 мл). Содержимое колбы осторожно взбалтывают для равномерного распределения клеток, а затем центрифугируют. Надосадочную жидкость сливают и к осадку добавляют 10 мл 0,95% раствора цитрата натрия, подогретого до t° 37°. Клетки тщательно ресуспензируют и помещают в термостат при t° 37° на 40-45 мин. После этого вновь проводят центрифугирование, надосадочную жидкость сливают и к осадку добавляют свежеприготовленный фиксатор, состоящий из 3 ч. метилового спирта и 1 ч. концентрированной уксусной кислоты. Через 10 мин. осадок ресуспензируют и оставляют в фиксаторе еще на 20 мин. при комнатной температуре, затем центрифугируют в течение 10 мин., вновь меняют фиксатор и приготовляют препараты тем же способом, как при фиксации культуры лейкоцитов крови.

Исследование кариотипа может быть с успехом использовано для диагностики хромосомных заболеваний человека. За последнее время выделена целая группа хромосомных болезней, связанных с патологией как половых, так и аутосомных хромосом (см. Наследственные болезни). Помимо изменения количества хромосом, возможно нарушение их морфологии. Так, при хроническом миелоидном лейкозе наблюдается необычно малая акроцентрическая хромосома из 21-й пары. Появление анеуплоидии (увеличение или уменьшение числа хромосом, некратное гаплоидному числу хромосом) может служить прогностическим тестом для терминальной стадии лейкоза.

Цитогенетические исследования все ближе смыкаются с онкологическими. Возможно, что изменения хромосомного набора при раковых процессах можно будет использовать для их ранней диагностики. Для цитогенетических исследований используют методы кратковременных тканевых культур: метод плазменного сгустка с последующим исследованием субкультур и метод первично трипсинизированных суспензионных культур. Предпочтение следует отдать первому методу, так как второй требует большого количества ткани для получения суспензии клеток, способных к размножению.

Для создания наиболее благоприятных условий метаболизма используют плацентарную сыворотку человека, не обладающую токсичностью, 50% эмбриональный экстракт абортированных плодов человека, который готовят на среде Игла. Для закрепления кусочков на стекле и прикрепления большего числа клеток при применении суспензионных культур используют сухую человеческую плазму IV группы, разведенную перед употреблением средой Игла и плацентарной сывороткой 1:1; после внесения эксплантата добавляют эмбриональный экстракт. Культивирование проводят во флаконах Карреля (см. Культура тканей).

Рис. 1. Половой хроматин в виде овала (Х1100).
Рис. 2. Половой хроматин в виде треугольника (XI100).
Рис. 3. Половой хроматин в виде утолщения ядерной оболочки (Х1100).
Рис. 4. Хроматинотрицательное ядро у женщины (Х1100).
Рис. 5. Нормальный женский кариотип (x1100).

Основа метода – микроскопическое изучение хромосомы. Цитологические исследования стали широко использоваться с начала 20-гг. ХХ в . для изучения морфологии хромосом, культивирования лейкоцитов для получения метафазных пластинок .

Развитие современной цитогенетики человека связано с именами цитологов Д.Тио и А.Левана. В 1956 г. они первыми установили, что у человека 46 хромосом , что положило начало широкому изучению митотических и мейотических хромосом человека.

В 1959 г. французские ученые Д.Лежен, Р.Тюрпен и М. Готье установили хромосомную природу болезни Дауна. В последующие годы были описаны многие другие хромосомные синдромы, часто встречающиеся у человека. Цитогенетика стала важнейшим разделом практической медицины. В настоящее время цитогенетический метод применяется для диагностики хромосомных болезней, составление генетических карт хромосом, изучения мутационного процесса и других проблем генетики человека.

В 1960 г. в г. Денвере была разработана первая Международная классификация хромосом человека. В ее основу легли размеры хромосом и положение первичной перетяжки – центромеры. Все хромосомы по форме разделены на метоцентрические, субметацентрические и акроцентрические и подразделены на 7 групп, обозначенных латинскими буквами А, В, С, D, E, F, G. Каждая пара хромосом была наделена порядковым номером от 1 до 22, выделены отдельно и поименованы латинскими буквами – Х и У половые хромосомы.

В 1971 г. на Пражской конференции генетиков в дополнении к Денверской классификации были представлены методы дифференциальной окраски хромосом, благодаря которым каждая хромосома приобретает свой неповторимый рисунок, что помогает точной идентификации.

Основные сведения о морфологии хромосом человека получены при изучении их в метафазах митоза и профазе – метафазе мейоза. При этом важно, количество делящихся клеток, было высоким. Важнейшие цитогенетические работы выполнены на лимфоцитах переферической крови, поскольку культивирование лимфоцитов в течение 2-3 суток в присутствии фитогемагглютинина позволяет получить метофазные пластинки для хромосомного анализа.

Цитогенетическому анализу подвергают однослойные метафазные пластинки с раздельно лежащими хромосомами. Для этого делящиеся клетки обрабатывают кольхицином и некоторыми химическими веществами.

Важным этапом цитогенетического анализа является окраска полученных препаратов. Ее проводят простыми дифференциальными и флуоресцентными методами.

Успехи молекулярной цитогенетики человека позволяют разработать новые методы изучения хромосом. Так, следует отметить метод флуоресцентной гибридизации, который дает возможность исследовать широкий круг вопросов: от локализации гена до расшифровки сложных перестроек между несколькими хромосомами.

Таким образом, соединение цитогенетических и молекулярно – генетических методов в генетике человека делает почти неограниченными возможности диагностики хромосомных аномалий.


Для качественной своевременной диагностики врожденных заболеваний, предрасположенности к онкологическим патологиям используется цитогенетическое исследование.

С помощью современных методик и новейшего оборудования изучается хромосомный набор плода.

Найденные аномалии в хромосомном аппарате позволят выявить и предотвратить возможные патологии еще до рождения ребенка.

Данная процедура отличается сложностью и многоступенчатостью, поэтому для решения каждой отдельной диагностической задачи требуется свое цитогенетическое специализированное обследование.

Цитогенетическое исследование изучает связи между наследственными факторами и ядерными структурами соматических клеток человека.

Данные методы анализа широко используются в биологии и медицине для определения происхождения, эволюции, изменчивости живых существ на протяжении филогенеза и онтогенеза.

Особое внимание уделяется индивидуальным генетическим особенностям. Именно поэтому главным предметом, с которым работает цитогенетический метод исследования, является хромосомный набор человека, животных и растений.

Изменения в хромосомах, передаваясь по наследству, определяют признаки организма, его подверженность различным заболеваниям, устойчивость к неблагоприятным факторам внешней среды.

Именно хромосомы определяют передачу некоторых заболеваний, поэтому по их набору и структурным изменениям можно увидеть предрасположенность конкретного человека к развитию онкологических и других тяжелых болезней.

Разнообразные структурные перестройки хромосом, аномалии хромосомного набора выявляет цитогенетический анализ и исследование.

Такие методики применяются для современной диагностики опасных заболеваний на начальных стадиях их развития.

На ранних стадиях беременности применение цитогенетического исследования хромосом плода позволяет определить пол будущего ребенка на клеточном уровне.

Высокотехнологичное оборудование последнего поколения, проверенные методики исследования позволяют обнаруживать и предотвращать онкологические заболевания и генетические патологии.

Точная диагностика дает возможность определить наиболее оптимальную тактику лечения, которая будет способствовать положительному терапевтическому результату.

Успешность такой процедуры зависит от качества, точности оборудования, квалификации, опыта медицинского персонала.

Точные данные анализа хромосом определяют успешность всего последующего лечения, поэтому необходимо стараться с первого раза получить правильные результаты.

Иногда данный вид диагностики оказывается единственно возможным. Эта технология исследования позволяет создать большое количество копий ДНК, которые исследуются различными способами, повышая достоверность результатов.

Выявленная на ранних стадиях болезнь лечится намного легче, а эффективная быстрая терапия зачастую спасает жизнь.

Исследование кариотип

Хромосомный набор (кариотип) изучается несколькими способами, которые используют различный биологический материал для анализов.

Исследование кариотип чаще всего работает с венозной кровью, которая смешивается в пробирке с литием и гепарином.

Забор крови производится в количестве 2 мл, после чего она содержится внутри питательной среды на протяжении 3 суток. Только после этого полученный материал фиксируется и исследуется под микроскопом.

За месяц до анализа хромосом следует отказаться от приема антибиотиков, кроме того, такие процедуры не проводятся при простудных заболеваниях.

Исследования кариотипа (кариотипирование) анализирует с помощью методики световой микроскопии форму, размер, число хромосом, используя специальное окрашивание. Нормальные показатели у мужчин обозначаются 46,XY, а у женщин – 46,XX.

Кариотипирование исследует структурные аномалии генетического материала, которые связаны с разрывами хромосом. Эти разрушения компенсируются с помощью различных нездоровых аномальных комбинаций.

С развитием современной медицинской техники появляются новые цитогенетические методики исследования, которые эффективно идентифицируют такие патологические изменения хромосом.

Если существуют подозрения на генетические отклонения в развитии эмбриона человека, то отдельно производится цитологический анализ плода.

Современные медицинские центры с хорошим оборудованием и квалифицированным персоналом выявляют различные пороки развития, хромосомные болезни, с достаточно высокой точностью определяют возможности благополучно выносить ребенка.

Если есть подозрения на онкологические заболевания органов системы кроветворения, то назначается цитологическое исследование костного мозга.

Такие анализы проводятся только в медицинских учреждениях, которые имеют специальное оборудование и квалифицированный персонал.

Это вызвано тем, что забор биологического материала для анализа и исследования связан с опасностью для здоровья и жизни.

С целью исключения хромосомных заболеваний плода на 3-4 месяце беременности проводится анализ хориона, который исследует не менее 20 клеток системы кроветворения.

Такое тестирование поможет предвидеть такие патологии, как болезнь Хантера, синдром Дауна и многие другие заболевания.

Изменение набора хромосом при онкологических процессах может быть использовано для ранней диагностики рака, поэтому диагностические исследования на цитологическом уровне активно развиваются с ростом технического прогресса.

Задачи анализа кариотипа и его виды

Подробное изучение кариотипа проводится для решения следующих конкретных задач:

  • уточнения диагностического основания для назначения оптимального лечения онкологических заболеваний;
  • выявления причины врожденных заболеваний ребенка на генетическом уровне;
  • нахождение генетических причин выкидыша, женского бесплодия;
  • выявление последствий воздействия вредных факторов на работе;
  • обнаружения аномальных хромосом у плода.

Таким образом, показаниями к проведению подобного анализа являются бесплодие, прерывание беременности, подозрение на хромосомные патологии, отсутствие менструаций у женщин половозрелого возраста, нарушения и задержки полового развития.

Хромосомные аномалии у плода нередко могут становиться причиной неразвивающейся беременности.

В зависимости от уровней проведения анализ кариотипа бывает двух видов:

  • обычным;
  • молекулярным.

Если нарушение нормального кариотипа происходит на ранних стадиях полового развития человека, то при слиянии половых клеток и образовании зиготы такие аномалии сохраняются.

В дальнейшем развитии эмбрион сохраняет патологические неправильные хромосомы. Такое положение приводит к патологическим изменениям индивидуального развития, которые нередко оказываются нежизнеспособными.

Однако бывает положение, когда изначально при делении зиготы развивается несколько линий делений клеток, которые имеют разные кариотипы. Это позволяют выявить обычные цитогенетические методы исследования.

Молекулярное кариотипирование является самым современным методом исследования генома человека. С помощью такого анализа появилась возможность выявлять различные вариации числа копий генов.

Такие патологии характеризуются потерями участков молекул ДНК, которые содержат важную генетическую информацию. Все это приводит к умственной отсталости, эпилепсии, раку, аутизму.

С помощью этого метода можно достаточно точно определить гены, которые находятся в области перестройки, выяснить их непрямой или непосредственный вклад на развитие генетических заболеваний.

На сегодняшний день этот метод является важнейшим инструментом для постановки точного диагноза большинства генетических патологий.

Процедура кариотипирования

Набор внутри соматических клеток организма, состоящий из 23 пар хромосом, одна из которых передается от матери, а другая – от отца, представляет собой кариотип человека.

Для проведения анализа кариотипа используются любые клетки, которые могут быть получены из крови, костного мозга, эпителия человека.

На протяжении клеточного цикла внешний вид хромосом значительно меняется. На одних стадиях митоза они располагаются внутри ядра, не имеют спиральной формы, а на других образуется спиральная структура большего размера.

Наиболее подходящий для внешнего наблюдения этап клеточного деления – метафаза. Именно на этой стадии можно проводить микроскопическое исследование хромосом.

Исследовательская процедура проводится в следующем порядке:

  1. Митоз останавливается на стадии метафазы и с помощью добавления колхицина, который фиксирует незаконченный процесс деления клеток, выделенная клеточная структура обогащается;
  2. Такие клетки окрашиваются, фиксируются, после чего их фотографируют под микроскопом;
  3. Полученные фотографии гомологичных хромосом систематизируются и выкладываются в определенном порядке.

С появлением методов дифференциальной окраски хромосом стала возможна их более подробная детализация при микроскопическом исследовании. Со временем эта методология совершенствовалась и развивалась.

Сдать анализ на определение кариотипа можно во многих специализированных клиниках. При этом такая процедура может проводиться в двух вариантах.

В первом случае анализируются количественные и структурные изменения хромосом, полученных от родителей.

Во втором анализируются внутренние мутации хромосом под влиянием неблагоприятных внешних факторов.

Нередко кариотипирование назначается супругам для определения причин бесплодия. При этом сдача биологического материала на анализ может происходить в разное время.

Таким образом, анализ кариотипов имеет большое значение в медицине, поскольку позволяет определять хромосомные перестройки, нарушения их структуры и порядка.

Цитогенетические обследования диагностируют ряд генетических заболеваний, которые напрямую связаны с хромосомами.

Наследственность человека трудно поддается изучению:

Примерно одинаковая продолжительность жизни исследователя (врача) и пациента, максимально может изучит 3-4 поколения в семье,

Поздно наступающая половая зрелость человека и малое число потомков,

Большое число хромосом и генов,

Отсутствие записанных родословных в семье,

Гибридологический метод применять нельзя.

Существует ряд методов, которые позволяют проследить наследование признаков. Это позволяет установить диагноз, бороться с болезнями, провести консультацию лицам, нуждающимся в ней.

Клинико- генеалогический

Биохимический

Цитогенетический

Близнецовый

Популяционно-статестический

Имунно-генетический

Близнецовый метод.

МZ (ОБ) однояйцевые.

1 яйцеклетка + 1 сперматозоид → зигота, которая далее на ранних стадиях делиться на 2 эмбриона.

Всегда одного пола (генетически эдентичны). Различия между ними зависят в основном от действия внешних факторов.

2 яйцеклетка + 2 сперматозоида = → 2 зиготы.

DZ (РБ). Они сходны между собой как 2 сестры или 2 брата, рождённые порознь. Могут быть и разнополые или однополые. Различия зависят от наследственности и от средовых факторов.

Метод позволяет разграничить роль наследственности и среды в разнообразии признаков человека.

Если возникновение признака (или его отсутствие) в значительной степени зависит от генетической конструкции тогда у ОБ совпадение наблюдается чаще.

Внутрипарное сходство близнецов (похожесть) называется конкорданность, у ОБ она > чем РБ.

(псориаз МЗ 61 % РБ 13%) . Шизофрения 69% (10%). Депрессия (психоз) 96% (19%).

90-100% оттенок кожи, форма носа, оттенок радужки, у ОБ

Группа крови, слюны, резусу у ОБ- 100%

81-90% дактилоскоп. Узору у ОБ.

Сущность метода: изучения внутрипарного сходства близнецов, при сравнении которых можно судить о влиянии среды и наследственности на развитие того или иного признака (воздействие хим. в-в, лекарств…).

Цитогенетический метод.

Это микроскопический анализ хромосом (кариотипа) позволяет выявить числовые и структурные изменения хромосом (перестройки, поломки и др..

Хромосомы изучают в делящихся клетках костного мозга, лимфоцитах крови, реже кожи, мышц.

Хромосомы можно изучать и будущего ребёнка (эмбриона): ворсины хориона, клетки плаценты, пуповинной крови, амниотической жидкости (околоплодных вод- метод амниоцентез).

Клетки отбирают, выращивают на питательной среде, добавляют колхитин. Он останавливает митоз на стадии метафазы. Микропрепараты обязательно окрашивают. Существует различные методики цитогенетической диагностики. Методом можно определять половой хроматин (тельце Барра)

Показания к методу:

У пробанда, его родителей или родственников при подозрении на хромосомную болезнь (уточнение диагноза)

При тяжёлых психических расстройствах

При первичной аменореи (отсутствие менструации) бесплодии

При спонтанных абортах, мёртворожденных

У детей с множественными пороками развития, не подходящими под какую либо болезнь.

При изучении мутагенного действия, каких либо факторов (лекарственные средства, наркотики, радиация…)

При проведении медико- генетического консультирования.

Метод приводит к более точной диагностики, к своевременному лечению и предупреждению рождения больного ребёнка.

Цитогенетика представляет собой самостоятельный раздел учения о наследственности, в котором исследуются различные, прежде всего, наблюдаемые (эксплицированные) носители, содержащие в себе информацию о генетической наследственности. Такими носителями выступают хромосомы различных типов (политенные, митотические и мейотические), пластиды, интерфазные ядра, и, в наименьшей степени - митохондрии.

Исходя из этого, цитогенетический метод представляет собой совокупность способов и технологий изучения, прежде всего, хромосом, в ходе которых устанавливается их количественный параметр, производится их химико-биологическое описание, исследуется структура и режимы поведения во время клеточного деления. Научной задачей данного исследования является установление связи между характером и динамикой изменения структуры хромосом и картиной, отражающей изменчивость признаков.

Одним из важнейших направлений исследования, которое предполагает цитогенетический метод, является проведение анализа кариотипа человека. Данное исследование, как правило, проводят на культурах, в которых происходит деление половых и соматических клеток.

Самая распространенная культура для такого рода исследований - клетки периферической крови, такие как лимфоциты, фибробласты и клетки костного мозга. Самой доступной культурой, используемой в медицинской цитогенетике, являются лимфоциты крови. Причина этого состоит в том, что, как правило, они являются предметом анализа и в При плода цитогенетический метод предполагает использование клеточных культур, выбор которых обусловлен рядом факторов. Главным из них является срок беременности. Например, при этом сроке менее 12 недель, цитогенетический анализ хромосом лучше всего производить с участием клеток хориона, а при сроках беременности более 12 недель, целесообразно для исследования рассматривать клетки самого плода. Для этой цели они специально выделяются из плаценты и крови плода.

Для установления кариотипа цитогенетический наследственности требует получения образца крови в количестве не менее 1-2 мл. При этом сам метод предполагает ведение исследования, состоящего из трех основных этапов:

Выделение и на которых будет осуществляться анализ;

Окраска препарата;

Проведение тщательного анализа препарата под микроскопом.

Эффективным цитогенетический метод генетики может быть только тогда, когда будут соблюдены следующие условия. Во-первых, должно быть определенное количество клеток, находящихся в метафазной стадии. Во-вторых, культивирование должно проводиться в строгом соответствии с установленными правилами и в течение периода не менее 72 часов. В-третьих, фиксация клеток должна производиться раствором и метанола в строгом соотношении этих веществ 3: 1.

На этапе окраски препарата для выбор цветов производится с учетом самой цели исследования, то есть, какой тип перестроек необходимо изучить. Чаще всего, используют метод сплошного окрашивания, так как он наиболее прост для определения количественного параметра хромосом. Современные исследования больше всего применяют данный метод окрашивания для определения аномалий кариотипа в их количественном выражении. Но такой цитогенетический метод не дает возможности определить и выявить структурную динамику хромосом. Поэтому применяют другие, специальные методы, которые позволяют нивелировать данный недостаток метода сплошного окрашивания. Наиболее распространенные из них, такие как метод дифференцированной окраски, G-метод, R-метод и иные.

И, наконец, третий этап исследования состоит в микроскопическом изучении окрашенных хромосом, находящихся в метафазной стадии. В ходе него устанавливается количество нормальных и аномальных по своему состоянию клеток организма плода человека. Для этого, как правило, проводится анализ нескольких тканей.