Содержание статьи

АЗОТ, N (nitrogenium), химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом), и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого, известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO 3 –), нитриты (NO 2 –), цианиды (CN –), нитриды (N 3–) и азиды (N 3 –).

Историческая справка.

Опыты А.Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает «безжизненный». В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его «вредный воздух». Латинское название азота происходит от греческих слов nitron и gen, что означает «образующий селитру».

Фиксация азота и азотный цикл.

Термин «фиксация азота» означает процесс связывания атмосферного азота N 2 . В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл.

Строение ядра и электронных оболочек.

В природе существуют два стабильных изотопа азота: с массовым числом 14 ( содержит 7 протонов и 7 нейтронов) и с массовым числом 15 ( содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12 N, 13 N, 16 N, 17 N получены искусственно. Схематически электронное строение атома азота таково: 1s 2 2s 2 2p x 1 2p y 1 2p z 1 . Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (–III) до (V), и они известны.

Молекулярный азот.

Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид Nє N (или N 2). У двух атомов азота три внешних 2p -электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N–N равно 1,095 Å. Как и в случае с водородом (см . ВОДОРОД) , существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39° С. Модификация b плавится при –209,96° С и кипит при –195,78° C при 1 атм (см . табл. 1).

Энергия диссоциации моля (28,016 г или 6,023Ч 10 23 молекул) молекулярного азота на атомы (N 2 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот.

Получение и применение.

Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов.

Азот из атмосферы.

Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO 2 , пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода.

Лабораторные способы.

Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например:

Очень удобен процесс окисления иона аммония нитрит-ионом:

Известны и другие способы – разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной:

При каталитическом разложении аммиака при высокой температуре тоже можно получить азот:

Физические свойства.

Некоторые физические свойства азота приведены в табл. 1.

Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА
Плотность, г/см 3 0,808 (жидк.)
Температура плавления, °С –209,96
Температура кипения, °С –195,8
Критическая температура, °С –147,1
Критическое давление, атм а 33,5
Критическая плотность, г/см 3 а 0,311
Удельная теплоемкость, Дж/(мольЧК) 14,56 (15° С)
Электроотрицательность по Полингу 3
Ковалентный радиус, 0,74
Кристаллический радиус, 1,4 (M 3–)
Потенциал ионизации, В б
первый 14,54
второй 29,60
а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.

Химические свойства.

Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s -уровне и три наполовину заполненные 2р -орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl 5 – стабильное соединение, а NCl 5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N 2 H 4 и азиды металлов MN 3 . Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды M x N y . В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Нитриды.

Соединения азота с более электроположительными элементами, металлами и неметаллами – нитриды – похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M–N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества.

Ионные нитриды.

Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N 3– . К таким нитридам относятся Li 3 N, Mg 3 N 2 , Zn 3 N 2 и Cu 3 N 2 . Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH 3 и гидроксиды металлов.

Ковалентные нитриды.

Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF 3 и NCl 3). К ковалентным нитридам относятся, например, Si 3 N 4 , P 3 N 5 и BN – высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза.

Нитриды с промежуточным типом связи.

Переходные элементы в реакции с NH 3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов – Fe 4 N, W 2 N, Mo 2 N, Mn 3 N 2 . Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью.

Водородные соединения азота.

Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды . Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода – аммиак NH 3 и гидразин N 2 H 4 . К ним относится также азотистоводородная кислота HNNN (HN 3).

Аммиак NH3.

Аммиак – один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак).

Строение молекулы.

Молекула NH 3 имеет почти пирамидальное строение. Угол связи H–N–H составляет 107° , что близко к величине тетраэдрического угла 109° . Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра.

Cвойства аммиака.

Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной).

Аммиак как растворитель.

Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме

Синий цвет связывают с сольватацией и движением электронов или с подвижностью «дырок» в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация

аналогично процессу, протекающему в воде:

Некоторые химические свойства обеих систем сопоставлены в табл. 4.

Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl 2 и K, поскольку CaCl 2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой.

Получение аммиака.

Газообразный NH 3 выделяется из солей аммония при действии сильного основания, например, NaOH:

Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg 3 N 2 , водой. Цианамид кальция CaCN 2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении:

Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Таблица 4. СРАВНЕНИЕ РЕАКЦИЙ В ВОДНОЙ И АММИАЧНОЙ СРЕДЕ
Водная среда Аммиачная среда
Нейтрализация
OH – + H 3 O + ® 2H 2 O NH 2 – + NH 4 + ® 2NH 3
Гидролиз (протолиз )
PCl 5 + 3H 2 O POCl 3 + 2H 3 O + + 2Cl – PCl 5 + 4NH 3 PNCl 2 + 3NH 4 + + 3Cl –
Замещение
Zn + 2H 3 O + ® Zn 2+ + 2H 2 O + H 2 Zn + 2NH 4 + ® Zn 2+ + 2NH 3 + H 2
Сольватация (комплексообразование )
Al 2 Cl 6 + 12H 2 O 2 3+ + 6Cl – Al 2 Cl 6 + 12NH 3 2 3+ + 6Cl –
Амфотерность
Zn 2+ + 2OH – Zn(OH) 2 Zn 2+ + 2NH 2 – Zn(NH 2) 2
Zn(OH) 2 + 2H 3 O + Zn 2+ + 4H 2 O Zn(NH 2) 2 + 2NH 4 + Zn 2+ + 4NH 3
Zn(OH) 2 + 2OH – Zn(OH) 4 2– Zn(NH 2) 2 + 2NH 2 – Zn(NH 2) 4 2–

Химические свойства аммиака.

Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH 3 Ч H 2 O, которое часто ошибочно считают гидроксидом аммония NH 4 OH; в действительности существование NH 4 OH в растворе не доказано. Водный раствор аммиака («нашатырный спирт») состоит преимущественно из NH 3 , H 2 O и и малых концентраций ионов NH 4 + и OH – , образующихся при диссоциации

Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH 3 . Поэтому NH 3 – это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода:

Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH 3 с образованием координационного соединения. Например:

Символ M n + представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu 2+ , Mn 2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH 4 NO 3 , хлорид аммония NH 4 Cl, сульфат аммония (NH 4) 2 SO 4 , фосфат аммония (NH 4) 3 PO 4 . Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH 2 CONH 2 , получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов:

Аммиак реагирует с гидридами и нитридами также с образованием амидов:

Амиды щелочных металлов (например, NaNH 2) реагируют с N 2 O при нагревании, образуя азиды:

Газообразный NH 3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N 2 и H 2:

Атомы водорода в молекуле NH 3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH 3 , образуя смесь веществ, содержащую NI 3 . Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH 3 c Cl 2 образуются хлорамины NCl 3 , NHCl 2 и NH 2 Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl 2) конечным продуктом является гидразин:

Гидразин.

Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N 2 H 4 Ч H 2 O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H 2 O 2 . Чистый безводный гидразин – бесцветная гигроскопичная жидкость, кипящая при 113,5° C; хорошо растворяется в воде, образуя слабое основание

В кислой среде (H +) гидразин образует растворимые соли гидразония типа + X – . Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты.

Оксиды азота.

В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N 2 O, NO, N 2 O 3 , NO 2 (N 2 O 4), N 2 O 5 . Имеется скудная информация об образовании пероксидов азота (NO 3 , NO 4). 2HNO 2 . Чистый N 2 O 3 может быть получен в виде голубой жидкости при низких температурах (–20

При комнатной температуре NO 2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0° C молекула NO 2 димеризуется в тетраоксид диазота, причем при –9,3° C димеризация протекает полностью: 2NO 2 N 2 O 4 . В жидком состоянии недимеризовано только 1% NO 2 , а при 100° C остается в виде димера 10% N 2 O 4 .

NO 2 (или N 2 O 4) реагирует в теплой воде с образованием азотной кислоты: 3NO 2 + H 2 O = 2HNO 3 + NO. Технология NO 2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты.

Оксид азота(V)

N 2 O 5 (устар . ангидрид азотной кислоты) – белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P 4 O 10:

2MX + H 2 N 2 O 2 . При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H–O–N=N–O–H.

Азотистая кислота

HNO 2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария:

Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO 2 (или N 2 O 3) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H–O–N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO, а при взаимодействии с окислителями окисляется до азотной кислоты.

Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты – нитриты – хорошо растворяются в воде, кроме нитрита серебра. NaNO 2 применяется в производстве красителей.

Азотная кислота

HNO 3 – один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др.

Литература:

Справочник азотчика . М., 1969
Некрасов Б.В. Основы общей химии . М., 1973
Проблемы фиксации азота. Неорганическая и физическая химия . М., 1982



Азот (N) - газ, содержание которого в атмосфере составляет около 78 %. Азот входит в состав аминокислот и нуклеотидов. Строение атома азота определяет физические и химические свойства элемента.

Строение

Азот - седьмой элемент периодической таблицы, расположенный в пятой группе и втором периоде. Относительная атомная масса равна 14. В природных условиях встречаются два изотопа азота - 14 N и 15 N.

Рис. 1. Азот в таблице Менделеева.

Азот состоит из ядра с зарядом +7 и семи электронов, распределённых по двум энергетическим уровням. Нахождение элемента в пятой группе указывает на количество электронов на внешнем уровне и высшую валентность. В невозбуждённом состоянии на внешнем энергетическом уровне находится три электрона, поэтому азот может проявлять две валентности - III и V.

Запись электронного строения атома азота - 1s 2 2s 2 2p 3 или +7 N) 2) 5 .

Физические свойства

Азот - двухатомный (N 2) газ без запаха и вкуса, плохо растворимый в воде. Азот может находиться в газообразном, жидком и твёрдом состояниях. В сжиженной форме азот имеет температуру кипения -196°С. При -209,86°C азот становится твёрдым. Под влиянием разных температур кристаллическая решётка твёрдого азота может изменяться, создавая модификации элемента.

Рис. 2. Жидкий и твёрдый азот.

Химические свойства

Атомы азота соединены тройной связью (N ≡ N), что обеспечивает максимальную прочность. Даже при нагревании азота до 3000°C наблюдается незначительное разложение молекул (до 0,1 % от взятого количества газа). Именно поэтому азот - химически малоактивный элемент. В соединениях при нагревании азот легко расстаётся с другими элементами.

Основные химические свойства азота приведены в таблице.

Соединения азота с металлами и неметаллами называются нитридами.

Азот не реагирует с кислотами, водой и основаниями. Невозможно непосредственное взаимодействие молекул азота с серой и галогенами. Более активно с этими веществами при нормальных условиях реагирует атомарный азот.

Применение

Несмотря на пассивность азота, элемент широко применяется в промышленности. Кроме того, азот входит в состав клеток, без него невозможно построение белка и ДНК.

Рис. 3. Азот в составе ДНК.

Азот используется при производстве:

  • удобрений;
  • взрывчатых веществ;
  • медикаментов;
  • красителей;
  • пластмассы;
  • искусственных волокон;
  • аммиака.

Жидкий азот используется для охлаждения, заморозки, а также для окисления двигателей ракет. Оксид азота применяется в качестве наркоза и для производства аэрозолей.

Что мы узнали?

Рассмотрели схему строения азота, его физические, химические свойства, применение. Азот состоит из положительно заряженного ядра и двух электронных оболочек, на которых находится семь электронов. Азот - малоактивный газ. Молекула азота состоит из двух атомов элемента, соединённых тройной связью. Азот может находиться в трёх агрегатных состояниях. Элемент реагирует с некоторыми металлами, неметаллами и кислородом. Азот используется в промышленности, медицине, сельском хозяйстве. Кроме того, азот входит в состав живых организмов.

В молекуле пиридина имеет место p,p-сопряжение. Пиридиновый азот из-за большей электроотрицательности по сравнению с углеродом смещает к себе единую p-электронную плотность, в целом понижая электронную плотность ароматического кольца. Поэтому такие системы с пиридиновым азотом называют p-недостаточными.

При замене фрагмента - СН = СН – на > NН возникает пятичленный цикл – пиррол

1. Молекула пиррола имеет циклическое строение.

2. Все атомы углерода в цикле находятся в sp 2 -гибридизации, атом азота также sp 2 -гибридизацию, при этом атом азота поставляет в единое p-электронное облако двухэлектронную Р z -орбиталь.

3. Общая π-электронная плотность пиррола включает в себя 4n+2 = 6 р-электронов

В молекуле пиррола имеет место р,p-сопряжение. Системы, имеющие пиррольный азот называют p-избыточными или суперароматическими системами. Наличие такой системы сильно влияет на реакционную способность пиррола.

В природных соединениях ароматический пиррольный цикл часто встречается в различных многоядерных соединениях, из которых наиболее важное значение имеет порфиновое ядро, входящее в состав гемоглобина и хлорофилла.

Сопряженная система из 26 р-электронов (11 двойных связей и 2 неподеленные пары электронов пиррольных атомов. Большая энергия сопряжения (840 Кдж) свидетельствует о высокой стабильности порфина.

Понятие ароматичности распространяется не только на нейтральгные молекулы, но и на заряженные ионы. _

При замене фрагмента – СН=СН – в бензоле на – СН возникает карбоциклический – циклопентадиенил анион, относящийся к небензоидной структуре. Циклопентадиенил ион входит в состав лекарственного препарата ферроцена (дициклопентадиенил железо) и природного соединения азулена.

Циклопентадиенил анион образуется при отщеплении протона от циклопентадиена-1,3.

Рассмотрим критерии ароматичности для циклопентадиенил аниона:

1) соединение циклическое

2) все атомы углерода имеют sp 2 - гибридизацию

Ферроцен относится к сандвичеобразным металлоорганическим соединениям (стимулирует процессы кроветворения и применяется при железодефицитных анемиях.

Циклогептатриенил катион (тропилий катион) образуется из циклогептатриена-1,3,5 при отщеплении гидрид иона.


Тропилий катион - правильный семиугольник. Ароматический секстет образован перекрыванием 6-одноэлектронных и одной свободной р z -орбиталью.

Рассмотрим критерии ароматичности для тропилий катиона:

1) Соединение циклическое

2) Все атомы углерода имеют sp 2 - гибридизацию

3) Общая π-электронная система включает в себя 4n + 2 = 6 р-электронов

Слайд 1

Открытый урок по химии в 9 классе
Учитель химии Кузина И.В. 2014 г.
Филиал МБОУ Токаревской СОШ №2 в с. Гладышево

Слайд 2

V группа, главная подгруппа
N-азот неметалл P- фосфор неметалл As- мышьяк неметалл Sb- сурьма амфотерный металл Bi- висмут амфотерный металл

Слайд 3

В воздухе он главный газ Окружает всюду нас. Угасает жизнь растений Без него, без удобрений. В наших клеточках живет Важный элемент…
N

Слайд 4

Тема урока
«Азот, его строение и свойства»
N2

Слайд 5

Цели урока:
Сформировать представление о строении атома и молекулы азота; Изучить физические и химические свойства вещества; Развивать исторические познания в области открытия химического элемента; Раскрыть роль азота в жизни человека и растений, а также в промышленности; Повышать заинтересованность учеников и активизировать имеющиеся у них знания.

Слайд 6

Девиз урока:
«Нет жизни без азота, ибо он является непременной составной частью белков.» Д.Н.Прянишников
Элемент жизни

Слайд 7

ПЛАН ПОРТРЕТА АЗОТА
История открытия азота. Азот в природе. Физические свойства. Строение атома и молекулы азота. Паспорт химического элемента (положение в ПСХЭ). Химические свойства. Получение азота. Области применения азота.

Слайд 8

История открытия азота
В 1772 году английский ученый Д. Резерфорд и шведский исследователь К. Шееле обнаружили газ, который не поддерживал горение, дыхание. В 1787 году А. Лавуазье установил наличие в воздухе газа. Назвал газ «азот» - безжизненный. В 1790 году Ж. Шаптал назвал газ нитрогениум – «рождающий селитру».
Шведский ученый К. Шееле
Английский ученый Д. Резерфорд
А. Лувуазье
Ж. Шаптал

Слайд 9

В воздухе- 78,08%по объёму и 75,6% по массе. Соединения азота в небольших количествах содержаться в почве. Входит в состав белка. Общее содержание в земной коре - 0,03%
Азот в природе

Слайд 10

Физические свойства
Физические свойства
Бесцветный газ, без цвета, запаха и вкуса.
Плохо растворим в воде
Ткип. -196 °C (жидкий азот)
Т пл. - 210 °C (твердый азот)
Не поддерживает горение и дыхание

Слайд 11

СТРОЕНИЕ И СВОЙСТВА АТОМА
Z=+7 +1p=7 2s2 2p3 0n=7 1s2 -1е=7 +7)2)5 Электронная формула азота 1S22S22P3

Слайд 12

Строение и свойства молекулы
СВЯЗЬ: -КОВАЛЕНТНАЯ НЕПОЛЯРНАЯ -ТРОЙНАЯ -ПРОЧНАЯ
МОЛЕКУЛА: -ОЧЕНЬ УСТОЙЧИВАЯ -НИЗКАЯ РЕАКЦИОННАЯ СПОСОБНОСТЬ
N
N N N N

Слайд 13

Паспорт химического элемента
химический знак N Порядковый номер 7 неметалл V группа, главная подгруппа (А подгруппа) 2 период, малый период, 2 ряд Аr=14 степени окисления -3,0,+1,+2,+3,+4,+5 формула высшего оксида N2O5 летучее водородное соединение – NН3 (газ аммиак)

Слайд 14

Заполните таблицу
Символ элемента Состав ядра атома Электронная формула Характерные степени окисления Формула и характер Формула и характер Формула водород- ного соедине- ния
Символ элемента Состав ядра атома Электронная формула Характерные степени окисления Высшего оксида Высшего гидроксида Формула водород- ного соедине- ния

Слайд 15

Химические свойства
Свойства окислителя А) Взаимодействие с металлами. 6Li+N2 = 2Li3N (нитрид лития) - обычные условия t 3Ca+N2= Ca3N2 (нитрид кальция) – при нагревании При взаимодействии с металлами азот проявляет степень окисления -3. Б) Взаимодействие с водородом С водородом азот взаимодействует с заметной скоростью при нагревании, повышении давлении, в присутствии катализатора: Рt N2+3H2 2NH3 + Q

Слайд 16

Химические свойства
Свойства восстановителя В) Взаимодействие с кислородом. Успешно такие реакции идут только при весьма жестких условиях. Для окисления азота кислородом нужна электрическая дуга, причем не более 5% азота вступает в реакцию. В природе такой процесс происходит повсеместно - взаимодействие азота с кислородом воздуха при грозовых разрядах подобно реакции в электрической дуге. t=20000C N2+O2 2NO – Q

Слайд 17

Вывод
При взаимодействии с металлами и водородом азот является окислителем. При взаимодействии с кислородом азот является восстановителем.

Слайд 18

Проверь себя
N2+3H2 NH3 +Q Обратимая Соединения Экзотермическая ОВР Каталитическая Гомогенная
N2+O2 2NO –Q Обратимая Соединения Эндотермическая ОВР Некаталитическая Гомогенная

Слайд 19

Получение азота
А) Промышленный способ (перегонка жидкого воздуха): воздух охлаждают и переводят в жидкое состояние, затем испарением отгоняют азот (tкип(N2)= -1960C tкип(О2)= -1830С) Б) Лабораторный способ (разложение нитритов) NH4NO2= N2+2H2O (реакция идет при нагревании)

Слайд 20

Области применения азота
Свободный азот применяют во многих отраслях промышленности; в медицине (нашатырный спирт) жидкий азот применяют в холодильных установках; большое количество азота идет на синтез аммиака, из которого получают азотную кислоту, минеральные удобрения (мочевину, сульфаты и фосфаты аммония).

Азот в природеВ воздухе
1%
21%
азот
кислород
углекислый газ,
инертные газы
78%
04.02.2018
Карташова Л.А.

Круговорот азота в природе

04.02.2018
Карташова Л.А.

Свойства азота

В свободном состоянии азот существует в
виде двухатомных молекул N2. В этих
молекулах два атома азота связаны очень
прочной тройной ковалентной связью.
N N
N N
Азот – бесцветный газ без запаха и вкуса. Плохо
растворяется в воде. В жидком состоянии (темп.
кипения −195,8 °C) – бесцветная, подвижная, как
вода, жидкость. Плотность жидкого азота 808
кг/м³. При −209,86 °C азот переходит в твердое
состояние в виде снегоподобной массы или
больших белоснежных кристаллов.
04.02.2018
Карташова Л.А.

Свойства азота

При обычных условиях азот взаимодействует только с
литием, образуя нитрид лития:
6Li+ N2 = 2Li3N
С другими металлами он реагирует только при нагревании.
При высоких температурах, давлении и в присутствии
катализатора азот реагирует с водородом, образуя аммиак:
N2 + 3H2 = 2NH3
При температуре электрической дуги он соединяется с
кислородом, образуя оксид азота (II):
N2 + O2 = 2NO - Q
04.02.2018
Карташова Л.А.

Оксиды азота

Несолеобразующий
оксид - «веселящий газ»
Бесцветный негорючий
газ с приятным
сладковатым запахом и
привкусом.
Несолеобразующий
оксид, бесцветный газ,
плохо растворимый в
воде. Плохо сжижается;
в жидком и твёрдом
виде имеет голубой цвет.
Кислотный оксид,
бесцветный газ(при н.у)
в твёрдом виде синеватого цвета.
Устойчив только при
температурах ниже-4 °C
Оксид
азота(I)
Оксид
азота(II)
Оксид
азота(III)
Кислотный оксид,
«лисий хвост» бурый,
очень ядовитый газ
Оксид
азота(IV)
04.02.2018
Кислотный оксид.
Бесцветные, очень
летучие кристаллы.
Крайне неустойчив.
Оксид
азота(V)
Карташова Л.А.

Аммиак

N
H
H
H
Аммиак – бесцветный газ с резким запахом,
почти в два раза легче воздуха. Аммиак
нельзя вдыхать продолжительное время,
т.к. он ядовит. Аммиак очень хорошо
растворяется в воде.
В молекуле аммиака NH3 три ковалентные
полярные связи, между атомом азота и
атомами водорода.
H N H
H
04.02.2018
Карташова Л.А.
или
H N H
H

Получение аммиака в промышленности

04.02.2018
Карташова Л.А.

10. Получение аммиака в лаборатории

04.02.2018
Карташова Л.А.

11. Использование аммиака в народном хозяйстве

04.02.2018
Карташова Л.А.

12. Азотная кислота

Азотная кислота - бесцветная, дымящая
на воздухе жидкость, температура
плавления −41,59 °C, кипения +82,6 °C
с частичным разложением.
Растворимость азотной кислоты в воде
неограничена.
H O N
04.02.2018
Карташова Л.А.
O
O

13. Химические свойства азотной кислоты

Типичные свойства:
а) с основными и амфотерными оксидами:
CuO + 2HNO3 = Cu(NO3)2 + H2O
ZnO + 2HNO3 = Cu(NO3)2 + H2O
б) с основаниями:
KOH + HNO3 = KNO3+H2O
в) вытесняет слабые кислоты из их солей:
CaCO3 + 2HNO3 = Ca(NO3)2 + H2O + CO2
При кипении или под действием света азотная кислота
частично разлагается:
4HNO3 = 2H2O + 4NO2 + O2
04.02.2018
Карташова Л.А.

14. Химические свойства азотной кислоты

1. С металлами до Н
1. С металлами до Н
3Zn+8HNO3=3Zn(NO3)2+4H2O+2NO Zn+4HNO3=Zn(NO3)2+2H2O+2NO
2. С металлами после Н
2. С металлами после Н
3Cu+8HNO3=3Cu(NO3)2+4H2O+2NO Cu+4HNO3=Cu(NO3)2+2H2O+2NO2
3. С неметаллами
S+2HNO3= H2SO4+2NO
3. С неметаллами
S+6HNO3= H2SO4+6NO2+2H2O
4. С органическими веществами
C2H6+HNO3=C2H5NO2
4. Пассивирует железо, алюминий,
хром
04.02.2018
Карташова Л.А.

15. Соли азотной кислоты

Соли
азотной
кислоты
Натриевая селитра
Кальциевая селитра
Калийная селитра
04.02.2018
Аммиачная селитра
Карташова Л.А.

16. Вставьте пропущенные слова

В периодической системе Д.И. Менделеева азот
расположен в 2 периоде, V группе, главной
подгруппе. Его порядковый номер 7 , относительная
атомная масса 14 .
В соединениях азот проявляет степени окисления
+5, +4, +3, +2, +1, -3 . Число протонов в атоме азота 7 ,
электронов 7 , нейтронов 7 , заряд ядра +7 ,
электронная формула 1s22s22p3 Формула высшего
оксида N2O5 , его характер кислотный, формула
высшего гидроксида НNО3 , формула летучего
водородного соединения NН3 .
04.02.2018
Карташова Л.А.

17. Распределите соединения азота по классам неорганических соединений

Оксиды
неверно
NH
Кислоты
неверно
NO
Соли
неверно
NO
неверно
верно
верно
неверно
NaNO
верно
HNO
неверно
NH
верно
неверно
N2O5
верно
Al(NO
2)3
верно
NO
неверно)
Fe(NO
3 2
верно
LiNO
3
HNO3
3
N2O5
неверно
HNO
2
04.02.2018
2
3
HNO2
3
неверно
NO
2
Карташова Л.А.
2
KNO3
3
3
неверно
NO
2
5

18. Источники информации

Габриелян О. С. Химия. 9 класс:
http://ru.wikipedia.org/wiki
http://dic.academic.ru/dic.nsf/ruwiki/324035
http://www.catalogmineralov.ru/mineral/50.html
http://chemmarket.info/
http://www.alhimikov.net/video/neorganika/menu.html
04.02.2018
Карташова Л.А.